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1 Exponential Diophantine equations

Diophantine equations are just equations we solve with the constraint that all variables must be
integers. These are generally really hard to solve (for example, the famous Fermat’s Last Theorem
is an example of a Diophantine equation).

Today, we will begin by focusing on a special kind of Diophantine equation: exponential Diophantine
equations. Here’s an example.

Example 1. Solve 5x − 8y = 1 for integers x and y.

These can still get really hard, but there’s a special technique that solves them most of the time.
That technique is to take the equation modulo m.

In this example, if 5x − 8y = 1, then in particular 5x − 8y ≡ 1 (mod 21). But what do the powers
of 5 and 8 look like modulo 21? We have:

• 5x ≡ 1, 5, 4, 20, 16, 17, 1, 5, 4, . . . , repeating every 6 steps.

• 8y ≡ 1, 8, 1, 8, . . . , repeating every 2 steps.

So there are only 12 possibilities for 5x− 8y when working modulo 21. We can check them all, and
we notice that 1− 1, 1− 8, 5− 1, 5− 8, . . . , 17− 1, 17− 8 are not ever equal to 1. So the equation
has no solutions.

Okay, but there’s a magic step here: how did we pick 21?

Example 2. Solve 5x − 8y = 1 for integers x and y, but in a way that’s not magic.

There are several rules to follow for picking the modulus m. The first is one we’ve already broken:

Rule 1: Choose m to be a prime or a power of a prime.

The reason is that taking an equation modulo 21 gives you no extra information over knowing it
modulo 3 and modulo 7. But calculations with 3 and 7 are easier, so we might as well stick to
those. Okay, but which primes?

Rule 2: Choose m so that one or more powers repeat in only a few steps.

More precisely, if m | a − 1, then a ≡ 1 (mod m), so powers of a will always be constant. If
m | a2− 1, then a2 ≡ 1 (mod m), so powers of a repeat every two steps. If m | a3− 1, then powers
of a repeat every three steps, and so on.

Choosing m so that m | a is also useful, but a bit tricky: we’ll consider this later on.



In this example, we should consider m = 4 first, since 4 | 8 and 4 | 5 − 1, but that doesn’t help:
since 5x ≡ 1 (mod 4) and 8y ≡ 0 (mod 4) for most y, we get the equation 1 − 0 ≡ 1 (mod 4),
which is always true. (Of course, if it turned out to be false, we’d be done really quickly.)

Next, let’s try m = 7, since 7 | 8− 1, so 8y simplifies to 1y = 1 modulo 7. We get

5x − 1 ≡ 1 (mod 7)

so 5x ≡ 2 (mod 7). The powers of 5 modulo 7 are 1, 5, 4, 6, 2, 3, . . . , repeating every 6 steps, so x
can be 4 or 10 or 16 or 22 or . . . . In particular, x is even, and we can write the original equation as

25x/2 − 8y = 1.

Now taking m = 3 is very appealing, because 3 | 25− 1 and 3 | 82 − 1. We get

1x/2 − (−1)y ≡ 1 (mod 3)

which is impossible to satisfy, since 1− (−1)y is always either 0 or 2. So, once again, we’ve shown
that there are no solutions.

Example 3. Solve 4x + 5y = 6z for integers x, y, and z.

As a counterpoint, here is an example with a solution: 40+51 = 61. (If we didn’t spot this solution,
proceeding as before would help us, telling us things such as “x is odd” or “y is a multiple of 3”.)
At this point, we want to proceed differently. We can’t hope to show there are no solutions, because
there is one. We want to show it’s the only one.

Rule 3: After finding a solution, choose m to reduce a power to 0.

In this case, suppose we take the equation modulo 4. If x 6= 0, then 4x ≡ 0 (mod 4), and we get

0 + 1y ≡ 6z (mod 4).

This is impossible, because 6 is even, so a power of it can’t be 1 modulo 4.

Next, we have to consider the x = 0 case, when 1 + 5y = 6z. As before, we know that one solution
(y = z = 1) exists. To rule out further solutions, we can take m = 4, m = 9, or m = 25. (The first
two will make 6z ≡ 0 for z ≥ 2; the last will make 5y ≡ 0 for y ≥ 2.) Let’s try m = 4 again first,
as the simplest. We get

1 + 1y ≡ 0 (mod 4)

which is a contradiction, since 2 6≡ 0 (mod 4). We conclude that no solution with z ≥ 2 exists, so
either z = 0 or z = 1. Checking both, we find no new solution, so (0, 1, 1) is the only solution to
the original equation.



2 Problems

2.1 Warm-up

1. (ARML 1993) There are several values for a prime p with the property that any five-digit
multiple of p remains a multiple of p if you “rotate the digits”. One such value is 41 (for
example, since 50635 is a multiple of 41, so are 55603, 35506, 63550, and 6355); another such
value is 3. Compute the value of p that is greater than 41.

2.2 Exponential Diophantine equations

1. Solve over the integers:

(a) 2x − 1 = 3y.

(b) 7x + 4 = 3y.

(c) 3x + 2 = 5y.

(d) 2x + 1 = 3y.

(e) 3x + 4y = 5z.

2. Find all positive integers x and y such that 2x + 3y is a perfect square.

3. (BMO 1981) Find the smallest positive value of |12m − 5n|, where m, n are positive integers.

2.3 Other Diophantine equations

Note: in the case of polynomials (where the equation has, e.g., x5 rather than 5x) the key is still
to choose a prime such that the power is simple, but this is now done differently. The power xk

reduces nicely modulo a prime p when p−1 divides k or at least a small multiple of k. For example,
for all x, x5 is one of {−1, 0, 1} modulo 11, because (x5)2 = x10 ≡ 1 (mod 11) unless 11 | x.

Experiment!

1. Show that there are no integer solutions to x3 + y3 + z3 = 400.

2. (PUMaC 2009) Find all prime numbers p which can be written as p = a4 + b4 + c4 − 3 for
some primes a, b, and c (not necessarily distinct).

3. (USAMO 1979) Determine all non-negative integer solutions, apart from permutations, of the
equation

n4
1 + n4

2 + · · ·+ n4
14 = 1599.

4. Find all integer solutions to x2 + 2x = y2.
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