## Number Theory

## Everything else

Misha Lavrov

## ARML Practice 10/06/2013

## Solving integer equations using divisors

PUMaC, 2009. How many positive integer pairs $(a, b)$ satisfy
$a^{2}+b^{2}=a b(a+b) ?$

## Solving integer equations using divisors

PUMaC, 2009. How many positive integer pairs $(a, b)$ satisfy
$a^{2}+b^{2}=a b(a+b) ?$
(1) Let $p$ be a prime. Let $p^{x}$ be the highest power of $p$ dividing $a$, and $p^{y}$ be the highest power of $p$ dividing $b$.

## Solving integer equations using divisors

PUMaC, 2009. How many positive integer pairs $(a, b)$ satisfy
$a^{2}+b^{2}=a b(a+b) ?$
(1) Let $p$ be a prime. Let $p^{\times}$be the highest power of $p$ dividing $a$, and $p^{y}$ be the highest power of $p$ dividing $b$.
(2) Suppose $x<y$. Then $p^{2 x}$ is the highest power dividing $a^{2}+b^{2}, p^{x+y}$ is the highest power dividing $a b$, and $p^{x}$ is the highest power dividing $a+b$.

## Solving integer equations using divisors

PUMaC, 2009. How many positive integer pairs $(a, b)$ satisfy
$a^{2}+b^{2}=a b(a+b) ?$
(1) Let $p$ be a prime. Let $p^{x}$ be the highest power of $p$ dividing $a$, and $p^{y}$ be the highest power of $p$ dividing $b$.
(2) Suppose $x<y$. Then $p^{2 x}$ is the highest power dividing $a^{2}+b^{2}, p^{x+y}$ is the highest power dividing $a b$, and $p^{x}$ is the highest power dividing $a+b$.
(3) So $p^{2 x}=p^{2 x+y}$, which means $y=0$. But $x<y$, so this is impossible. So we can't have $x<y$; we can't have $x>y$ for the same reason, so $x=y$.

## Solving integer equations using divisors

PUMaC, 2009. How many positive integer pairs $(a, b)$ satisfy
$a^{2}+b^{2}=a b(a+b) ?$
(1) Let $p$ be a prime. Let $p^{x}$ be the highest power of $p$ dividing $a$, and $p^{y}$ be the highest power of $p$ dividing $b$.
(2) Suppose $x<y$. Then $p^{2 x}$ is the highest power dividing $a^{2}+b^{2}, p^{x+y}$ is the highest power dividing $a b$, and $p^{x}$ is the highest power dividing $a+b$.
(3) So $p^{2 x}=p^{2 x+y}$, which means $y=0$. But $x<y$, so this is impossible. So we can't have $x<y$; we can't have $x>y$ for the same reason, so $x=y$.
(9) This is true for all $p$, so $a=b$. Then $2 a^{2}=a^{2}(a+a)=2 a^{3}$, so $a=b=1$.

## Competition-level problems

AIME, 1991. How many fractions $\frac{a}{b}$ are there, for which $a b=20$ ! (when written in simplest terms)? How many of these satisfy $0<\frac{a}{b}<1$ ?

Ukrainian MO, 2002. Solve

$$
n^{2002}=m(m+n)(m+2 n) \cdots(m+2001 n)
$$

for integers $m, n$.
British MO, 2002. Find all solutions in positive integers $a, b, c$ to the equation $a!\cdot b!=a!+b!+c!$.
Putnam, 2000. Prove that the expression $\frac{\operatorname{gcd}(n, k)}{n}\binom{n}{k}$ is an integer for all pairs of integers $n \leq k \leq 1$.

## Competition-level problems

## Solutions

AIME, 1991. We can factor

$$
20!=2^{18} \cdot 3^{8} \cdot 5^{4} \cdot 7^{2} \cdot 11 \cdot 13 \cdot 17 \cdot 19
$$

(What's important here is that there are 8 primes that appear in the factorization of 20 !, which are the 8 primes $\leq 20$.)

If $a b=20$ ! and $\frac{a}{b}$ is in simplest terms (that is, $\operatorname{gcd}(a, b)=1$ ) then each prime number must go entirely in $a$ or entirely in $b$. There are 2 possibilities for each prime, and eight primes, so that's $2^{8}=256$ choices.

How many are between 0 and 1?

## Competition-level problems <br> Solutions

AIME, 1991. We can factor

$$
20!=2^{18} \cdot 3^{8} \cdot 5^{4} \cdot 7^{2} \cdot 11 \cdot 13 \cdot 17 \cdot 19
$$

(What's important here is that there are 8 primes that appear in the factorization of 20 !, which are the 8 primes $\leq 20$.)

If $a b=20$ ! and $\frac{a}{b}$ is in simplest terms (that is, $\operatorname{gcd}(a, b)=1$ ) then each prime number must go entirely in $a$ or entirely in $b$. There are 2 possibilities for each prime, and eight primes, so that's $2^{8}=256$ choices.

How many are between 0 and 1?
We always have $\frac{a}{b}>0$, and either $\frac{a}{b}<1$ or $\frac{b}{a}<1$. Therefore the answer is 128: half of the total number of fractions.

## Competition-level problems

## Solutions

Ukrainian MO, 2002. Let $p$ be a prime. Then:

- If $p$ divides $m$, then $p$ divides the RHS, so $p$ divides the LHS, which is $n^{2002}$. Therefore $p$ divides $n$.
- If $p$ divides $n$, then $p$ divides the LHS, so $p$ divides the RHS, which means $p$ divides $m+k n$ for some $k$. Since $p$ also divides $k n, p$ must divide $m$.


## Competition-level problems <br> Solutions

Ukrainian MO, 2002. Let $p$ be a prime. Then:

- If $p$ divides $m$, then $p$ divides the RHS, so $p$ divides the LHS, which is $n^{2002}$. Therefore $p$ divides $n$.
- If $p$ divides $n$, then $p$ divides the LHS, so $p$ divides the RHS, which means $p$ divides $m+k n$ for some $k$. Since $p$ also divides $k n, p$ must divide $m$.

Normally, we'd refine this approach to show that the same power of $p$ divides $m$ and $n$. Here, there is a shortcut: If $m$ and $n$ are solutions, so are $\frac{m}{p}$ and $\frac{n}{p}$. Unless $m=n=0$, we can keep dividing by $p$ until one is no longer divisible by $p$; but then the other can't be divisible by $p$ either.

In any case, we prove $m=n$; but the only solution of this kind is $m=n=0$.

## Competition-level problems <br> Solutions

British MO, 2002. Ruling out $0 \leq a \leq 2$ and $0 \leq b \leq 2, a!\cdot b$ ! is much larger than $a$ ! or $b$ !, so $c$ is the largest of the three integers.

Next, we show that $a!=b!$. Suppose $a!<b!$ : then $b$ ! is divisible by $(a+1)$ !, and if we write

$$
a!\cdot b!-b!-c!=a!
$$

then everything on the left is divisible by $(a+1)$ !, while $a$ ! is not. This is impossible.

Now we have $a!^{2}=a!+a!+c!$, or $a!(a!-2)=c!$. Since $a!-2$ is not divisible by 3 , $a$ ! and $c$ ! must have the same number of factors of 3 , so $c=a+1$ or $c=a+2$. Checking both, we get a single solution:

$$
3!\cdot 3!=3!+3!+4!
$$

## Competition-level problems

## Solutions

Putnam, 2000. Our goal is to show that $\operatorname{gcd}(n, k)\binom{n}{k}$ is divisible by $n$.

For all primes $p$, suppose $p^{x}$ divides $n$ and $p^{y}$ divides $k$. If $x \leq y$ then all is good, because at $\operatorname{gcd}(n, k)\binom{n}{k}$ is divisible by $p^{x}$.

If $x>y$, we can use the following trick: $\binom{n}{k}=\frac{n}{k}\binom{n-1}{k-1}$, and so we can rewrite

$$
\frac{\operatorname{gcd}(n, k)}{n}\binom{n}{k}=\frac{\operatorname{gcd}(n, k)}{k}\binom{n-1}{k-1}
$$

Now we have only a power $p^{y}$ in the denominator, and at least $p^{y}$ in the numerator, so no power of $p$ is left in the denominator, and we are done.

## The totient function

The "totient", or Euler's $\phi$, is defined to be:
$\phi(n)=$ The number of $k, 1 \leq k \leq n$, so that $\operatorname{gcd}(n, k)=1$.
Exercise. Find $\phi(10000)$.

PUMaC, 2010. Find the largest positive integer $n$ such that $n \phi(n)$ is a perfect square.

## The totient function

The "totient", or Euler's $\phi$, is defined to be:
$\phi(n)=$ The number of $k, 1 \leq k \leq n$, so that $\operatorname{gcd}(n, k)=1$.
Exercise. Find $\phi(10000)$.

- Easy answer: $\operatorname{gcd}(10000, k)=1$ if $k$ ends in $1,3,7$, or 9 . There are 4000 such numbers between 1 and 10000 .
- General answer: Out of 10000 integers, $\frac{1}{2}$ are divisible by 2 , and $\frac{1}{5}$ are divisible by 5 , so there are $10000\left(1-\frac{1}{2}\right)\left(1-\frac{1}{5}\right)$ $=4000$ left.

PUMaC, 2010. Find the largest positive integer $n$ such that $n \phi(n)$ is a perfect square.

Using the "general answer" above, it's easy to see $n \phi(n)$ can't be a perfect square for $n>1$.

## Rule for raising something to a power mod $m$

## Theorem (Euler's theorem)

For all positive integers $a, n$ with $\operatorname{gcd}(a, n)=1$,

$$
a^{\phi(n)} \equiv 1 \quad(\bmod n)
$$

and therefore

$$
a^{m} \equiv a^{m \bmod \phi(n)} \quad(\bmod n) .
$$

Intuition: If $\operatorname{gcd}(a, 10)=1$, then there are $\phi(10)=4$ digits a can end in: $1,3,7$, and 9 . The powers of a will cycle through these digits: for example, when $a=3$, we have

$$
3^{0}=1, \quad 3^{1}=3, \quad 3^{2}=9, \quad 3^{3}=27 \equiv 7, \quad 3^{4}=81 \equiv 1, \ldots
$$

## Rule for raising something to a power mod $m$

## Theorem (Euler's theorem)

For all positive integers $a, n$ with $\operatorname{gcd}(a, n)=1$,

$$
a^{\phi(n)} \equiv 1 \quad(\bmod n)
$$

and therefore

$$
a^{m} \equiv a^{m \bmod \phi(n)} \quad(\bmod n) .
$$

Intuition: If $\operatorname{gcd}(a, 10)=1$, then there are $\phi(10)=4$ digits a can end in: $1,3,7$, and 9 . The powers of a will cycle through these digits: for example, when $a=3$, we have

$$
3^{0}=1, \quad 3^{1}=3, \quad 3^{2}=9, \quad 3^{3}=27 \equiv 7, \quad 3^{4}=81 \equiv 1, \ldots
$$

If $\operatorname{gcd}(a, n) \neq 1$, then powers of a eventually repeat every $\phi(n)$ steps, but this is trickier to use.

## Competition problems

(Note: this theorem is also useful for small things, like knowing that $1^{4} \equiv 2^{4} \equiv 3^{4} \equiv 4^{4} \equiv 1(\bmod 5)$ last week. These are problems where Euler's theorem is the main focus.)

Exercise. Compute $100^{100} \bmod 13$.
Texas A\&M, 2008. Find the last three digits of $2007^{2008}$.

VTRMC, 2012. Find the last two digits of $\underbrace{3^{3 .}}_{2012}$.
HMMT, 2011. Determine the remainder when

$$
2^{\frac{1 \cdot 2}{2}}+2^{\frac{2 \cdot 3}{2}}+\cdots+2^{\frac{2011 \cdot 2012}{2}}
$$

is divided by 7 .

## Competition problems

## Solutions

Exercise. $100^{100} \equiv(-4)^{100} \equiv(-4)^{4} \equiv 9(\bmod 13)$.
Texas A\&M, 2008. $2007^{2008} \equiv 7^{2008} \equiv 7^{8}(\bmod 1000)$. A shortcut for this: $7^{2}=49=50-1$, so

$$
7^{8}=(50-1)^{4}=50^{4}-4 \cdot 50^{3}+6 \cdot 50^{2}-4 \cdot 50+1 .
$$

But here, the first three terms are all divisible by 1000 , so all we need to worry about is $-4 \cdot 50+1 \equiv 801(\bmod 1000)$.

## Competition problems

## Solutions

3
VTRMC, 2012. Write $3 \uparrow \uparrow n$ for $3^{3}$ with $n 3$ 's. We use Euler's theorem recursively: for 100 we need $\phi(100)=40$, for which we need $\phi(40)=16$, for which we need $\phi(16)=8$, for which we need $\phi(8)=4$, for which we need $\phi(4)=2$.

Since 3 is odd, $3 \uparrow \uparrow 2007 \equiv 1(\bmod 2)$.
So $3 \uparrow \uparrow 2008 \equiv 3^{1} \equiv 3(\bmod 4)$.
So $3 \uparrow \uparrow 2009 \equiv 3^{3} \equiv 27 \equiv 3(\bmod 8)$.
So $3 \uparrow \uparrow 2010 \equiv 3^{3} \equiv 27 \equiv 11(\bmod 16)$.
So $3 \uparrow \uparrow 2011 \equiv 3^{11} \equiv 27(\bmod 40)$.
So $3 \uparrow \uparrow 2012 \equiv 3^{27} \equiv 87(\bmod 100)$.

## Competition problems

## Solutions

HMMT, 2011. We know $2^{n} \bmod 7$ is determined by $n \bmod 6$. But actually, more is true: $2^{3} \equiv 1(\bmod 7)$, so $n \bmod 3$ is enough.

When looking at $\frac{n(n+1)}{2} \bmod 3$, we know either $n-1, n$, or $n+1$ is divisible by 3 . Unless it's the first, $\frac{n(n+1)}{2}$ is also divisible by 3 , in which case $2^{\frac{n(n+1)}{2}} \equiv 1(\bmod 7)$. However, when $n-1$ is divisible by $3, \frac{n(n+1)}{2} \equiv 1(\bmod 3)$, and $2^{\frac{n(n+1)}{2}} \equiv 2(\bmod 7)$.

Therefore $2^{\frac{1 \cdot 2}{2}}+2^{\frac{2 \cdot 3}{2}}+\cdots+2 \frac{2011 \cdot 2012}{2} \bmod 7$ simplifies to

$$
\underbrace{2+1+1+2+1+1+\cdots+2}_{2011} \bmod 7
$$

which is $\frac{2010}{3}(2+1+1)+2 \equiv 1(\bmod 7)$.

