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Abstract. In this note, we will present some olympiad problems which
can be solved using quadratic congruences arguments.

1 Definitions and Properties

Let x, y and z be integers, x > 1, y ≥ 1 and (x, z) = 1. We say that z is a residue
of y − th degree modulo x if congruence ny ≡ z (mod x) has an intenger solu-
tion. Otherwise z is a nonresidue of y− th degree. For x = 2, 3, 4 the residues are
called quadratic, cubic, biquadratic, respectively. This article is mainly focused
on quadratic residues and their properties.

Lemma Let p be an odd prime. There are p−1
2 quadratic residues in the set

{1, 2, 3..., p− 1}.

1.1 Legendre’s Symbol

Given a prime number p and an integer a, Legendre’s symbol

(
a
p

)
is defined as:

(
a

p
) =

{
1 if a is a quadratic residue modulo p

−1 otherwise
(1)

Property 1 If a ≡ b (mod p) and ab is not divisible by p, then (ap ) = ( bp ).

Property 2 Legendre’s symbol is multiplicative, i.e. (abp ) = (ap )( bp ) for all
integers a, b and prime number p > 2.

Property 3 If p 6= 2, then (−1p ) = (−1)
p−1
2 .

Property 4 If p 6= 2, then ( 2
p ) = (−1)

p2−1
8 .

Property 5 If p 6 |a, p 6= 2, then a
p−1
2 ≡ (ap ) (mod p) (Euler’s Criterion)



Property 6 If p, q are distinct odd prime numbers, then (pq ) = ( qp )·(−1)
(p−1)·(q−1)

4

(Quadratic Reciprocity Law of Gauss)

1.2 Quadratic Congruences to Composite Moduli

Let a be an integer and b an odd number, and let b = pα1
1 pα2

2 . . . pαn
n be the

factorization of b into primes. Jakobi’s Symbol (ab ) is defined as:

(
a

b
) = (

a

p1
)α1(

a

p2
)α2 . . . (

a

pn
)αn (2)

Jakobi’s Symbol has almost the same properties as Legendre’s with few modi-
fications: It doesn’t have property 5, while at properties 3 and 4 p is changed
with an odd integer and at property 6 p, q are changed with distinct odd integers
with no common divisors.
It is easy to see that (ab ) = −1 implies that a is a quadratic nonresidue (mod p).
Indeed, if (ab ) = −1 , then by definition ( api ) = −1 for at least one pi|b; hence
a is a quadratic nonresidue modulo pi. The converse is false as seen from the
example ( 2

15 ) = (2
3 )( 2

5 ) = (−1)(−1) = 1 but 2 is not a quadratic residue modulo
15.

Theorem Let a be an integer and b be a positive integer, and let b = pα1
1 pα2

2 . . . pαn
n

be the factorization of b into primes. Then a is a quadratic residue modulo b if
and only if a is a quadratic residue modulo pαi

i , for each i = 1, 2, . . . n.

2 Warm-Up Problems

2.1

1.The positive integers a and b are such that the numbers 15a+16b and 16a−15b
are both squares of positive integers. What is the least possible value that can
be taken on by the smaller of these two squares?

Solution Let 15a+16b = k2 and 16a−15b = l2 ⇒ a = 15k2+16l2

481 , b = 16k2−15l2
481 ,

k, l ∈ N∗. 481 = 13·37⇒ 15k2+16l2 ≡ 0 (mod 13), 2k2 ≡ −3l2 (mod 13), k2 ≡
5l2 (mod 13). We have ( 5

13 ) = −1⇒ 13|l, 13|k. 15k2+16l2 ≡ 0 (mod 37), 32l2 ≡
−30k2 (mod 37), −5l2 ≡ −30k2 (mod 37), l2 ≡ 6k2 (mod 37). Combined with
the fact that ( 6

37 ) = −1 we get that 37|k, 37|l. The least possible value for l is
13 · 37 = 481. We can take k = l = 481 and thus we’ll get a = 31 · 481, b = 481.

2.2

Prove that 2n+1 has no prime factors of the form 8k+7. (Vietnam team selection
test 2004)



Solution Assume that there exists a prime p such that p|2n + 1 and p ≡ 7

(mod 8). If n is even, then (−1p ) = 1 but (−1p ) = (−1)
p−1
2 = −1 because p ≡ 3

(mod 4), a contradiction. If n is odd, then (−2p ) = 1 but (−2p ) = (−1)
p2−1

8 ·
(−1)

p−1
2 = −1 again a contradiction due to the fact that p ≡ 7 (mod 8).

2.3

Let p a prime number greater than 3. Calculate:

a)S =

p−1
2∑

k=1

[
2k2

p

]
− 2 ·

[
k2

p

]
if p ≡ 1 mod 4

b) T =

p−1
2∑

k=1

[
k2

p

]
if p ≡ 1 mod 8

Solution a)Let r1, r2...r p−1
2

be the quadradic residues (mod p) First, let’s ob-

serve that the sum is equivalent to

p−2
2∑
i=1

2{ri
p
} − {2ri

p
}. Each term 2{ rip } − {

2ri
p }

is 0 if ri ≤ p−1
2 and 1 if ri >

p−1
2 . So S is the number of quadratic residues

which are greater than p−1
2 . Since p ≡ 1 (mod 4) ⇒ if ri is quadratic residue ,

then so is p− ri, so there are half quadratic residues which are greater than p−1
2

⇒ S = p−1
4 .

b) We have T =

p−1
2∑

k=1

[
2k2

p
]− S

2 so all we have to do is to calculate

p−1
2∑

k=1

[
2k2

p
]

which is equivalent to
2(12+22+...

(p−1)2

4 )−(r1+r2+...r p−1
2

)

p where r1, r2, ...r p−1
2

are

the quadratic residues (mod p) . This is because 2 is a quadratic residue

(mod p). From now on it’s easy because r1 + r2 + ...r p−1
2

= p(p−1)
4 (remember

that p ≡ 1 (mod 4) means that if ri is a quadratic residue, then so is p− ri).

2.4

Let m, n ≥ 3 be positive odd integers. Prove that 2m − 1 doesn’t divide 3n − 1.

Solution Here we will use Jacoby’s Symbol. Suppose that 2m−1 divides 3n−1.

Let x = 3
n−1
2 . We have 3x2 ≡ 1 (mod 2m − 1) so (3x)2 ≡ 3 (mod 2m − 1) ⇒

( 3
2m−1 ) = 1. Using quadratic reciprocity, 1 = ( 3

2m−1 ) = ( 2m−1
3 )(−1)

2m−2
2 ⇒

( 2m−1
3 ) = −1 and this is a contradiction due to the fact that 2m − 1 ≡ 1

(mod 3).



3 Harder Problems

3.1 2013 Romanian Master in Mathematics

For a positive integer a, define a sequence of integers x1, x2, . . . by letting x1 = a
and xn+1 = 2xn + 1 for n ≥ 1. Let yn = 2xn − 1. Determine the largest possible
k such that, for some positive integer a, the numbers y1, . . . , yk are all prime.

Solution We will prove that the answer is 2. Suppose that there exists a such
that k ≥ 3. The numbers 2a− 1, 22a+1− 1, 24a+3− 1 are primes ⇒ the numbers
a, 2a+1, 4a+3 are primes (this is because of the fact that if 2M−1 is prime, then
M is also a prime. Otherwise if there existed a natural number d such that d|M
then 2d − 1 would divide 2M − 1). Let’s use Euler’s Criterion. 2

4a+3−1
2 ≡ ( 2

4a+3 )

(mod 4a + 3) ⇒ 22a+1 ≡ ( 2
4a+3 ) (mod 4a + 3). 22a+1 − 1 is prime so 22a+1 6≡ 1

(mod 4a+ 3), otherwise 22a+1 = 4a+ 4 and that will lead to a = 1, false. Hence

we have ( 2
4a+3 ) = −1 ⇒ −1 = (−1)

(4a+2)(4a+4)
8 = (−1)(2a+1)(a+1) ⇒ a+ 1 is odd

but a is prime so a = 2. If a = 2 we have that 211 − 1 = 23 · 87 is not prime,
contradiction. So we get that the answer is 2 and it’s achieved for a = 2.

3.2 2004 Romanian IMO Team Selection Test

Let p be an odd prime, ai, i = 1, 2 . . . p− 1 be Legendre’s symbol of i relative to

p (i.e. ai = 1 if i
p−1
2 ≡ 1 and ai = −1 otherwise). Consider the polynomial:

f = a1 + a2X + . . . ap−1X
p−2.

a) Prove that 1 is a simple root of f if and only if p ≡ 3 (mod 4).
b) Prove that if p ≡ 5 (mod 8), then f is a root of f of order exactly 1.

Solution a) We have that f(1) =

p−1∑
j=1

(
j

p
) = 0 because there are p−1

2 quadratic

residues and p−1
2 nonquadratic residues modulo p. Suppose p ≡ 1 (mod 4). Let’s

show that f ′(1) = 0. f ′(1) = a2 + 2a3 + 3a4 + · · · + (p − 2)ap−1, (−1p ) = 1 ⇒

aj = ap−j so (j − 1)aj + (p− j + 1)ap−j = (p− 2)aj and f ′(1) = (p− 2)

p−1
2∑
j=1

aj .

Denote S =

p−1
2∑
j=1

aj and T =

p−1∑
i= p+1

2

. S + T = 0 and S = T (because aj = ap−j)

⇒ S = T = 0 ⇒ f ′(1) = (p − 2)S = 0 and 1 is not a simple root of f .
Let’s suppose now that p ≡ 3 (mod 4). (−1p ) = −1 ⇒ aj = −ap−j+1 ⇒

(j−1)aj+(p−j−1)ap−j = aj(2j−p) is an odd number⇒ f ′(1) =

p−1
2∑
j=1

aj(2j−p)

is odd (because p−1
2 is odd) , so f ′(1) 6= 0 and 1 is a simple root of f .



b) Let p be a prime, p ≡ 4 (mod 8) . We’ve already proved that f ′(1) = 0. To

solve the problem , it is enough to prove that f”(1) =

p−1∑
j=1

(j−2)(j−1)aj 6= 1 and

for this we will show that f”(1) ≡ 4 (mod 8). aj = ap−j ( (−1p ) = 1)⇒ (j−2)(j−
1)aj+(p−j−2)(p−j−1)ap−j ≡ aj [(j − 2)(j − 1) + (3− j)(4− j)] = aj(j

2−3j+
2+j2−7j+12 ≡ aj(2j

2 − 2j − 2) (mod 8). It’s easy to show that 2j2−2j−2 ≡
2 (mod 8) if j ≡ 2, 3 (mod 4) and 2j2 − 2j − 2 ≡ −2 (mod 8) if j ≡ 0, 1
(mod 4). So f”(1) ≡ 2(−a1 + a2 + a3 − a4 · · ·+ a4k−1 − a4k − a4k+1 + a4k+2)

(mod 8) where p = 8k+5. We know from a) that

p−1
2∑
j=1

aj = 0 if p ≡ 1 (mod 4)⇒

f”(1) ≡ 4(a2 + a3 + a6 + a7 + . . . a4k−1 + a4k+2) (mod 8) but the sum a2+a3+
a6 . . . a4k+2 is odd (it’s the sum of 2k + 1 odd numbers) so f”(1) ≡ 4 (mod 8)
and we’ve finished.

3.3 IMO 2008

Prove that there are infinitely many positive integers n such that n2 + 1 has a
prime divisor greater than 2n +

√
2n

Solution Let p be a prime, p = 8k + 1. Note that 4−1 ≡ 6k + 1 (mod p).
Choose n = 4k − a, 0 ≤ a < 4k. Then (p−12 − a)2 + 1 ≡ 0 (mod p) is equivalent
to 4−1 + a+ a2 + 1 ≡ 0 (mod p), so a(a+ 1) ≡ −6k− 2 ≡ 2k− 1 (mod p) . But
a(a+1) is even and positive, so a(a+1) ≥ 10k. We have that (a+1)2 > a(a+1) ≥
10k > p, so n = p+1

2 − (a+ 1) < p+1
2 −

√
p < p+1

2 −
√

2n, so 2n+ 2
√

2n− 1 > p.
Note that this result is a bit stronger than the initial inequality.

3.4 2005 Moldavian IMO Team Selection Test

Given functions f, g : N∗ → N∗, g is surjective and 2f(n)2 = n2+g(n)2, ∀n > 0.
Prove that if |f(n)−n| ≤ 2005

√
n, ∀n > 0, then f(n) = n for infinitely many n.

Solution It’s easy (by Dirichlet’s Theorem) to find a strictly increasing sequence
of prime numbers pn with pn ≡ 3 (mod 8). Because g is surjective, there is a
sequence an with g(an) = pn. We have 2f(an)2 = a2n + p2n ⇒ 2f(an)2 ≡ a2n
(mod pn) and because ( 2

pn
) = −1⇒ pn|an and pn|f(an) so there exist sequences

xn and yn such that an = xnpn and f(an) = ynpn. We have 2y2n = x2
n + 1 and

| f(an)an
− 1| ≤ 2005√

an
⇒ lim

n→∞

f(an)

an
= 1 ⇒ lim

n→∞

√
x2
n + 1

xn
=
√

2 ⇒ lim
n→∞

xn =

lim
n→∞

yn = 1 and because xn and yn are integers sequences ⇒ there exists a

number k for which xn = yn = 1 and f(pn) = pn ,for every n ≥ k , hence the
conclusion follows.



3.5 2013 Iran Team Selection Test

Do there exist natural numbers a, b and c such that a2 + b2 + c2 is divisible by
2013(ab + bc + ca)?

Solution Suppose that exists n such that a2 + b2 + c2 = 2013n(ab+ bc+ ac) ⇒
(a + b + c)2 = (2013n + 2)(ab + bc + ac). Choose a prime p with p ≡ 2 (mod 3)
which divides 2013n+2 with an odd exponent( p2i+1||2013n+2 for some positive
integer i). Then pi+1|a+ b+ c and therefore p|a+ b+ c. Because p|ab+ bc+ac⇒
p|a2+ab+b2 (this is easy by substituting c ≡ −a− b (mod p))⇒ p|(2a+b)2+3b2

⇒ (−3p ) = 1 but this is false, so there are no such triplets.

3.6 A very useful lemma

Suppose that the positive integer a is not a perfect square. Then (ap ) = −1 for
infinitely many primes p.

Solution Let’s say that it’s not true. This means that there exists a number
r such that for every prime q > r, (aq ) = 1. Because a is not a perfect square,

we can write a = x2p1p2...pk where p1, p2...pk are primes in increasing order.
Let’s take a prime p > r, p ≡ 5 (mod 8). We have that (ap ) = (p1p )(p2p )...(pkp ).

If pi is odd, (pip ) = ( ppi ) (from Quadratic Reciprocity Law). If p1 = 2, ( 2
p ) =

(−1)
p2−1

8 = −1. (ap ) = ( pp1 )...( ppk ) or (ap ) = −( pp2 )...( ppk ). We can take r2, r2, ..., rk
residues (mod p2, p3...pk) such that ( r2p2 )...( rkpk ) is 1 or −1 as we wish. By Chinese

Remainders Theorem there are infinitely numbers t with t ≡ 5 (mod 8),t ≡ ri
(mod pi), 2 ≤ i ≤ k. Now we look at progression t + l8p2p3...pk. By Dirichlet’s
Theorem there are infinitely many prime q in this sequence and we take q > r.
We have that (aq ) = 1 but as we’ve already discussed we can select r2, r3...rk
such that (aq ) = −1, contradiction.

3.7 2015 Iran Team Selection Test

Let b1 < b2 < b3 < . . . be the sequence of all natural numbers which are sum of
squares of two natural numbers. Prove that there exists infinite natural numbers
like m which bm+1 − bm = 2015 .

Solution For any i , 1 ≤ i ≤ 2014 we can find infinitely many primes p such

that p ≡ 3 (mod 8) and ( 10072+i
p ) = −1 (10072 + i is not a perfect square,

so the second part follows easily from problem 6 and first part follows from
Chinese Remainders Theorem and Dirichlet’s Theorem). Now, we choose prime

numbers p1, p2..., p2014 such that pi ≡ 3 (mod 8) and ( 10072+i
pi

) = −1. There is

a number x such that x ≡ pi − i (mod p2i ) for any 1 ≤ i ≤ 2014 (by Chinese
Remainders Theorem). We will prove that there are infinitely many numbers a



such that the number a2 + 10072 is of the form x + kp21p
2
2...p

2
2014 for some k.

If we note y = a2 + 10072, we see that y and y + 2015 can be written as sum
of squares of two natural numbers and y + i, 1 ≤ i ≤ 2014, cannot because

y + i ≡ pi (mod p2i ). To prove this, we see that (x−1007
2

pi
) = 1, so there is a

number xi with x2
i ≡ x− 10072 (mod pi). We can find a numbers ti such that

p2i |(xi + piti)
2 − (x− 10072) (this is equivalent to finding a number ti such that

pi|x
2
i−x+10072

pi
+ 2xiti and that’s easy because pi does not divide xi, otherwise

pi would divide x− 10072 and pi would divide 10072 + i and we can avoid this
by choosing pi very large). We denote by ri the residue of xi + piti (mod p2i ).
By Chinese Remaindes Theorem we can find infinitely many numbers a such
that a ≡ ri (mod p2i ), 1 ≤ i ≤ 2014 , this means that a2 ≡ x− 10072 (mod p2i ),
1 ≤ i ≤ 2014 ⇒ a2 + 10072 = x + kp21p

2
2...p

2
2014 for some k and that’s all.

3.8 2013 Romanian Team Selection Test

Let S be the set of all rational numbers expressible in the form

(a21 + a1 − 1)(a22 + a2 − 1) . . . (a2n + an − 1)

(b21 + b1 − 1)(b22 + b2 − 1) . . . (b2n + bn − 1)

for some positive integers n, a1, a2, . . . , an, b1, b2, . . . , bn. Prove that there is an
infinite number of primes in S.

Solution Clearly, S is closed under multiplication and division: if r and s are
in S, so are rs and r

s . Any prime number which is 0, 1 or 4 (mod 5) is in S.
22 + 2 − 1 = 5 so 5 is in S. Now we will prove by induction that every prime
number which 1 or 4 (mod 5) is in S (11 = 32 +3−1 and 19 = 42 +4−1). Let’s
denote by p1, p2, .. the sequence of primes of this form in increasing order, and
let’s say that p1, p2...pn−1 are in S. We will show that pn is also in S. Because 5
is a quadratic residue (mod pn) there is a number x such that pn|(2x + 1)2 − 5
⇒ pn|x2 +x−1 and we can choose x such that 2x+1 < pn ⇒ p2n does not divide
x2 + x− 1 and every prime which divides x2 + x− 1 (every prime which divides
x2 + x − 1 is 0, 1, 4 (mod 5)) is less than pn. Because x2 + x − 1 is product of
primes which are among p1, p2...pn it can be written as tpn where t is in S ⇒
pn is in S (pn = x2+x−1

t and x2+x−1
12+1−1 = x2 + x− 1 is in S) so the induction step

is proved.

4 Some applications to Mordell’s equation

y2 = x3 + k, where k is an integer is called Mordell’s equation, because he
proved in 1922 that this equation has finitely many integral solutions. Although
at first sight it may seem that quadratic residues aren’t useful in this particular
equation, we’ll see that this surely isn’t the case.



4.1

The equation y2 = x3 + 7 has no integral solutions. If x is even, then y2 ≡
7 (mod 8), false. This means that x is odd. Rewrite the equation as follows:
y2 + 1 = x3 + 8, so y2 + 1 = (x + 2)(x2 − 2x + 4). Since x is odd, we get that
x2 − 2x + 4 = (x − 1)2 + 3 ≡ 3 (mod 4). So there exists a prime p such that
p|x2 − 2x + 4 ⇒ p|y2 + 1 ⇒ −1 ≡ y2 (mod p), so −1 is a quadratic residue (
mod p ), false, since p ≡ 3 (mod 4).

4.2

The equation y2 = x3 − 5 has no integral solutions. Reducing mod 4, we get
that y is even and x ≡ 1 (mod 4). Rewrite the equation as y2 + 4 = x3 − 1 =
(x− 1)(x2 + x + 1). Since x ≡ 1 (mod 4), we get that x2 + x + 1 ≡ 3 (mod 4),
so there exists a prime p such that p|x2 + x + 1, so p|y2 + 4. It follows that −4
is a quadratic residue (mod p), contradiction, since (−4p ) = (−1p )( 4

p ) = −1.

5 Proposed problems

5.1

Let p ≥ 3 be a prime number. Prove that the least quadratic nonresidue (mod p)
is less than

√
p + 1.

5.2

Let p be a prime number such that p ≡ 1 (mod 4). Prove that the equation
xp + 2p = p2 + y2 doesn’t have any solutions in natural numbers.

5.3 2005 Romanian Team Selection Test

Let n ≥ 0 be an integer and let p ≡ 7 (mod 8) be a prime number. Prove that

p−1∑
k=1

{
k2

n

p
− 1

2

}
=

p− 1

2
.

5.4 Mathematical Reflections

Let p be a prime of the form 4k+ 1 such that 2p ≡ 2 (mod p2). Prove that there
is a prime number q, divisor of 2p − 1, such that 2q > (6p)p.

5.5 Mathematical Reflections

If m is a positive integer show that 5m + 3 has neither a prime divisor of the
form p = 30k + 11 nor of the form p = 30k − 1.



5.6 2013 Tuymaada International Olympiad, Junior League, A.
Golovanov

Solve the equation p2 − pq − q3 = 1 in prime numbers.

5.7

Solve in natural numbers: 10n + 89 = x2.

5.8 (Mathematical Reflections)

Let a be a positive integer such that for each positive integer n the number a+n2

can be written as a sum of two squares. Prove that a is a square.

5.9 2007 Bulgaria team selection test

Let p = 4k + 3 be a prime number. Find the number of different residues
(mod p) of (x2 + y2)2, where (x, p) = (y, p) = 1

5.10 1999 Balkan Mathematical Olympiad

Let p be an odd prime congruent to 2 modulo 3. Prove that at most p − 1
members of the set {m2 − n3 − 1 | 0 < m, n < p} are divisible by p.

5.11

Let q be an odd prime and r a positive integer such that q does not divide r,
r ≡ 3 (mod 4) and (−rq ) = 1. Prove that 4qk + r does not divide qn + 1 for any
k, n positive integers.
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