Primes and Divisors

JV Practice 10/27/19 C.J. Argue

1 Pre-Problems

- 1. What is the smallest positive integer n such that 2016n is a perfect cube?
- 2. Compute the smallest positive integer with exactly 18 divisors.
- 3. If the sum of all of the divisors of n (including n itself) is 91, what is n?

2 Problems

- 1. Given that $2^a \cdot 3^8 \cdot 5^b \cdot 7^4 = 12^3 \cdot 14^c \cdot 15^5$, compute the ordered triple (a, b, c).
- 2. Compute the number of 0's at the end of the decimal expansion of $(1!)(2!)(3!)\cdots(24!)$.
- 3. Let $\tau(n)$ denote the number of divisors of n. (E.g., $\tau(12) = 6$, counting 1, 2, 3, 4, 6, and 12 itself.) For how many positive integers $n \leq 100$ is $\tau(n)$ a multiple of 3?
- 4. Call n an everyday number if the sum of the divisors of n (including n itself) is even. For example, 6 is an everyday number, since 1+2+3+6=12, but 8 is not, since 1+2+4+8=15. How many of the divisors of 10^{100} are everyday numbers?
- 5. A divisor of 10^{99} is chosen uniformly at random. Find the probability that it's divisible by 10^{88} .

3 Challenge

1. Prove that

$$1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}$$

is not an integer for any $n \ge 2$.

4 Competition

- 2. Compute the sum of the even divisors of 10,000.
- 3. Compute the number of ordered pairs (x, y) of positive integers such that gcd(x, y) = 12 and lcm(x, y) = 180.
- 4. Find the smallest positive integer n such that $214\cdot n$ and $2014\cdot n$ have the same number of divisors.
- 5. The sequence a_0, a_1, a_2 , is a sequence of positive integers where $a_n = n!$ for all $n \leq 3$. Moreover, for all $n \geq 4$, a_n is the smallest positive integer such that

$$\frac{a_n}{a_i a_{n-i}}$$

is an integer for all $0 \le i \le n$. Find a_{2019} .