Primes and Divisors

JV Practice 10/27/19
C.J. Argue

1 Pre-Problems

1. What is the smallest positive integer n such that $2016 n$ is a perfect cube?
2. Compute the smallest positive integer with exactly 18 divisors.
3. If the sum of all of the divisors of n (including n itself) is 91 , what is n ?

2 Problems

1. Given that $2^{a} \cdot 3^{8} \cdot 5^{b} \cdot 7^{4}=12^{3} \cdot 14^{c} \cdot 15^{5}$, compute the ordered triple (a, b, c).
2. Compute the number of 0 's at the end of the decimal expansion of $(1!)(2!)(3!) \cdots(24!)$.
3. Let $\tau(n)$ denote the number of divisors of n. (E.g., $\tau(12)=6$, counting $1,2,3,4,6$, and 12 itself.) For how many positive integers $n \leq 100$ is $\tau(n)$ a multiple of 3 ?
4. Call n an everyday number if the sum of the divisors of n (including n itself) is even. For example, 6 is an everyday number, since $1+2+3+6=12$, but 8 is not, since $1+2+4+8=15$. How many of the divisors of 10^{100} are everyday numbers?
5. A divisor of 10^{99} is chosen uniformly at random. Find the probability that it's divisible by 10^{88}.

3 Challenge

1. Prove that

$$
1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}
$$

is not an integer for any $n \geq 2$.

4 Competition

1. If $m 3 \mathrm{mmmmmmmmmmmmmmmmm} \mathrm{is} \mathrm{a} \mathrm{prime}$,$\mathrm{where} m is a digit that appears 20$ times, compute m.
2. Compute the sum of the even divisors of 10,000 .
3. Compute the number of ordered pairs (x, y) of positive integers such that $\operatorname{gcd}(x, y)=12$ and $\operatorname{lcm}(x, y)=180$.
4. Find the smallest positive integer n such that $214 \cdot n$ and $2014 \cdot n$ have the same number of divisors.
5. The sequence a_{0}, a_{1}, a_{2}, is a sequence of positive integers where $a_{n}=n$! for all $n \leq 3$. Moreover, for all $n \geq 4, a_{n}$ is the smallest positive integer such that

$$
\frac{a_{n}}{a_{i} a_{n-i}}
$$

is an integer for all $0 \leq i \leq n$. Find a_{2019}.

