Fermat's Little Theorem

JV Practice 11/24/19
C.J. Argue

Pre-Problems

1. Compute $3^{31}(\bmod 7)$.
2. Find the remainder when $2^{20}+3^{30}+4^{40}+5^{50}+6^{60}$ is divided by 7 .
3. Find the smallest positive integer x such that $x^{103} \equiv 4(\bmod 11)$.

Round 1

1. $[1 \mathrm{pt}]$ Compute $10^{73}(\bmod 19)$.
2. $[1 \mathrm{pt}]$ Find the two smallest integers x such that $x^{86} \equiv 6(\bmod 29)$.
3. [2 pts] Compute $2^{98}(\bmod 33)$.

Round 2

1. [2 pts] If a googolplex is $10^{10^{100}}$, what day of the week will it be a googolplex days from now? (Today is Sunday.)
2. [3 pts] Find all prime numbers p such that $29^{p}+1$ is a multiple of p.
3. [3 pts] The sequence

$$
x, x^{2}, x^{3}, \ldots \quad(\bmod 13)
$$

is periodic for every integer value of x. List all possible periods this sequence could have.

Round 3

1. $[3 \mathrm{pts}]$ Find $3^{1000000}(\bmod 19)$.
2. [4 pts] Find all positive integers x such that $2^{2^{x}+1}+2$ is divisible by 17 .
3. [4 pts] Find the smallest prime number that does not divide $9+9^{2}+9^{3}+\cdots+9^{2010}$.
4. [5 pts] If $f(x)=x^{x^{x^{x}}}$, find $f(17)(\bmod 92)$.
