Modular Inverses

Varsity Practice 10/27/19
Zichao Dong

1 Warm-Up

1. 11 girls and n boys picked $n^{2}+9 n-2$ mushrooms, and each kid picked equal many mushrooms. Determine whether girls are more than boys or boys are more than girls.
2. (Modulo inverse) Let a, n be coprime integers. Show that

$$
a x \equiv 1 \quad(\bmod n)
$$

has a unique solution $x \in\{0,1, \cdots, n-1\}$. Solve for $a=50$ and $n=2019$.
3. (Wilson's theorem) Let p be a prime number. Show that

$$
(p-1)!\equiv-1 \quad(\bmod p)
$$

2 Problems

1. Find the number of pairs of positive integers (a, b) are there such that $\operatorname{gcd}(a, b)=1$ and

$$
\frac{a}{b}+\frac{14 b}{9 a} \in \mathbb{Z}
$$

2. Suppose x, y, z are integers such that

$$
(x-y)(y-z)(z-x)=x+y+z
$$

Show that $27 \mid x+y+z$.
3. (AIME 1985) The numbers in the sequence $101,104,109,116, \cdots$ are of the form $a_{n}=100+n^{2}$, where $n=1,2,3, \cdots$ For each n, let d_{n} be the greatest common divisor of a_{n} and a_{n+1}. Find the maximum value of d_{n} as n ranges through the positive integers.
4. Let $p>5$ be a prime. Show that p^{2} divides the numerator of the expression

$$
1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{p-1} .
$$

5. (ARML 2018) The increasing infinite arithmetic sequence x_{1}, x_{2}, \cdots contains the terms 17 ! and 18 !. Compute the greatest integer X for which X ! must also appear in the sequence.
6. (USAMO 2018) Let p be a prime, and let a_{1}, \cdots, a_{p} be integers. Show that there exists an integer k such that the numbers

$$
a_{1}+k, a_{2}+2 k, \cdots, a_{p}+p k
$$

produce at least $\frac{p}{2}$ distinct remainders upon division by p.
7. (IMO 2019) Solve over positive integers the equation

$$
k!=\prod_{i=0}^{n-1}\left(2^{n}-2^{i}\right)
$$

8. (China 2019) Let m be an integer with $|m| \geqslant 2$. If a sequence of integers a_{1}, a_{2}, \cdots such that $a_{1} \neq 0$ or $a_{2} \neq 0$, and for every positive integer $n, a_{n+2}=a_{n+1}-m a_{n}$. If integers $r>s \geqslant 2$ such that $a_{r}=a_{s}=a_{1}$, show that $r-s \geqslant|m|$.
