Modular Inverses

Varsity Practice 10/27/19 Zichao Dong

1 Warm-Up

- 1. 11 girls and n boys picked n^2+9n-2 mushrooms, and each kid picked equal many mushrooms. Determine whether girls are more than boys or boys are more than girls.
- 2. (Modulo inverse) Let a, n be coprime integers. Show that

$$ax \equiv 1 \pmod{n}$$

has a unique solution $x \in \{0, 1, \dots, n-1\}$. Solve for a = 50 and n = 2019.

3. (Wilson's theorem) Let p be a prime number. Show that

$$(p-1)! \equiv -1 \pmod{p}.$$

2 Problems

1. Find the number of pairs of positive integers (a, b) are there such that gcd(a, b) = 1 and

$$\frac{a}{b} + \frac{14b}{9a} \in \mathbb{Z}.$$

2. Suppose x, y, z are integers such that

$$(x-y)(y-z)(z-x) = x + y + z.$$

Show that $27 \mid x + y + z$.

- 3. (AIME 1985) The numbers in the sequence 101, 104, 109, 116, \cdots are of the form $a_n = 100 + n^2$, where $n = 1, 2, 3, \cdots$ For each n, let d_n be the greatest common divisor of a_n and a_{n+1} . Find the maximum value of d_n as n ranges through the positive integers.
- 4. Let p > 5 be a prime. Show that p^2 divides the numerator of the expression

$$1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{p-1}.$$

- 5. (ARML 2018) The increasing infinite arithmetic sequence x_1, x_2, \cdots contains the terms 17! and 18!. Compute the greatest integer X for which X! must also appear in the sequence.
- 6. (USAMO 2018) Let p be a prime, and let a_1, \dots, a_p be integers. Show that there exists an integer k such that the numbers

$$a_1+k, a_2+2k, \cdots, a_p+pk$$

produce at least $\frac{p}{2}$ distinct remainders upon division by p.

7. (IMO 2019) Solve over positive integers the equation

$$k! = \prod_{i=0}^{n-1} (2^n - 2^i)$$

8. (China 2019) Let m be an integer with $|m| \ge 2$. If a sequence of integers a_1, a_2, \cdots such that $a_1 \ne 0$ or $a_2 \ne 0$, and for every positive integer n, $a_{n+2} = a_{n+1} - ma_n$. If integers $r > s \ge 2$ such that $a_r = a_s = a_1$, show that $r - s \ge |m|$.