Fermat's and Euler's Theorems
 Varsity Practice 11/3/19
 Tudor Dimitre-Popescu / Elizabeth Chang-Davidson

1 Pre-Problems

1. Prove that $\binom{p}{i}$ is divisible by p for any prime p and $1 \leq i \leq p-1$.
2. Compute $10^{73}(\bmod 19)$.
3. Prove that the equation $5 y^{2}+2 x^{100}=z^{2}$ doesn't have any nontrivial solutions in the integers.

2 Problems

1. Let $n=p q$, where p, q are distinct primes. Let a be an integer relatively prime to n. Prove that $a^{(p-1)(q-1)} \equiv 1(\bmod n)$.
2. Compute $2^{98}(\bmod 33)$.
3. (PUMaC 2008) If $f(x)=x^{x^{x^{x}}}$, find the last two digits of $f(17)+f(18)+f(19)+f(20)$.
4. A number n is said to be atrocious if there exists a prime p such that $p^{n} \mid\left(7^{p^{n}}+1\right)$. Find all atrocious numbers.
5. How many prime numbers p are there such that $29^{p}+1$ is a multiple of p ?
6. Show that if p is a prime and there exists x such that $p \mid x^{2}+1$, then $p \equiv 1(\bmod 4)$.

Very important statement in number theory
7. Prove that if p is a prime number, then $7 p+3^{p}-4$ is not a perfect square.

You might want to use the previous problem.
8. Prove or disprove: if p is a prime number, and k is an integer $2 \leq k \leq p$, then the sum of the products of each k-element subset of $\{1,2, \ldots, p\}$ will be divisible by p ?
Hint: Note that $x^{p}-x \equiv x(x-1)(x-2) \ldots(x-(p-1))(\bmod p)$ and apply Vieta's formulas.
9. Find all pairs (p, q) of prime numbers such that $p q$ divides $\left(5^{p}+5^{q}\right)$.
10. Find all primes p, q such that $\frac{\left(5^{p}-2^{p}\right)\left(5^{q}-2^{q}\right)}{p q} \in \mathbb{Z}$.
11. Solve in prime numbers the equation $x^{y}-y^{x}=x y^{2}-19$.

