Fermat's and Euler's Theorems

Varsity Practice 11/3/19 Tudor Dimitre-Popescu / Elizabeth Chang-Davidson

1 Pre-Problems

- 1. Prove that $\binom{p}{i}$ is divisible by p for any prime p and $1 \le i \le p-1$.
- 2. Compute $10^{73} \pmod{19}$.
- 3. Prove that the equation $5y^2 + 2x^{100} = z^2$ doesn't have any nontrivial solutions in the integers.

2 Problems

- 1. Let n = pq, where p, q are distinct primes. Let a be an integer relatively prime to n. Prove that $a^{(p-1)(q-1)} \equiv 1 \pmod{n}$.
- 2. Compute $2^{98} \pmod{33}$.
- 3. (PUMaC 2008) If $f(x) = x^{x^{x^{x}}}$, find the last two digits of f(17) + f(18) + f(19) + f(20).
- 4. A number n is said to be atrocious if there exists a prime p such that $p^n|(7^{p^n} + 1)$. Find all atrocious numbers.
- 5. How many prime numbers p are there such that $29^p + 1$ is a multiple of p?
- 6. Show that if p is a prime and there exists x such that $p|x^2 + 1$, then $p \equiv 1 \pmod{4}$. Very important statement in number theory
- 7. Prove that if p is a prime number, then $7p + 3^p 4$ is not a perfect square. You might want to use the previous problem.
- 8. Prove or disprove: if p is a prime number, and k is an integer 2 ≤ k ≤ p, then the sum of the products of each k-element subset of {1,2,...,p} will be divisible by p? *Hint: Note that x^p x ≡ x(x-1)(x-2)...(x-(p-1)) (mod p) and apply Vieta's formulas.*
- 9. Find all pairs (p,q) of prime numbers such that pq divides $(5^p + 5^q)$.

10. Find all primes
$$p, q$$
 such that $\frac{(5^p - 2^p)(5^q - 2^q)}{pq} \in \mathbb{Z}$.

11. Solve in prime numbers the equation $x^y - y^x = xy^2 - 19$.