Systems of Modular Equations

Varsity Practice 11/17/19
Matthew Shi

Modular Arithmetics Warmups

Recall that $a \equiv r \bmod b$ is equivalent to saying there exists $q \in \mathbb{Z}$ such that $a=b q+r$. In other words, the remainder of a divided by b is r.

1. How many integers from 1 to 2016 are divisible by 3 or 7 , but not 21 ?
2. Let $2^{1110} \equiv n(\bmod 1111)$ with $0 \leq n<1111$. Compute n.
3. Find smallest positive integer that has a remainder of 1 when divided by 2 , a remainder of 2 when divided by 3 , a remainder of 3 when divided by 5 , and a remainder of 5 when divided by 7 .
4. Compute the sum of the digits of 1001^{10}.
5. A number is between 500 and 1000 and has a remainder of 6 when divided by 25 and a remainder of 7 when divided by 9 . Find the only odd number to satisfy these requirements.
6. There are four consecutive positive integers (natural numbers) less than 2005 such that the first (smallest) number is a multiple of 5 , the second number is a multiple of 7 , the third number is a multiple of 9 and the last number is a multiple of 11 . What is the first of these four numbers? 781

Problems to Attack

1. What is the hundreds digit of 2011^{2011} ?
2. The three-digit prime number p is written in base 2 as p_{2} and in base 5 as p_{5}, and the two representations share the same last 2 digits. If the ratio of the number of digits in p_{2} to the number of digits in p_{5} is 5 to 2 , find all possible values of $p .601$
3. Let n be the smallest positive integer such that the number obtained by taking nâs rightmost digit (decimal expansion) and moving it to be the leftmost digit is 7 times n. Determine the number of digits in n.
4. Find the largest positive integer n that cannot be written as $n=20 a+28 b+35 c$ for nonnegative integers a, b, c.
5. It is known that, for all positive integers k,

$$
1^{2}+2^{2}+3^{2}+\ldots+k^{2}=\frac{k(k+1)(2 k+1)}{6}
$$

Find the smallest positive integer k such that $1^{2}+2^{2}+3^{2}+\ldots+k^{2}$ is a multiple of 200 .
6. Find the number of positive integers n less than 2017 such that

$$
1+n+\frac{n^{2}}{2!}+\frac{n^{3}}{3!}+\frac{n^{4}}{4!}+\frac{n^{5}}{5!}+\frac{n^{6}}{6!}
$$

is an integer.
7. The positive integers N and N^{2} both end in the same sequence of four digits abcd when written in base 10 , where digit a is not zero. Find the three-digit number $a b c$.
8. Let p be the third-smallest prime number greater than 5 such that:

- $2 p+1$ is prime
- $5^{p} \neq 1 \bmod 2 p+1$

Find p.
9. The number 229 has a 9-digit decimal representation that contains all but one of the 10 (decimal) digits. Determine which digit is missing.
10. Let

$$
p(x)=x^{2008}+x^{2007}+x^{2006}+\cdots+x+1
$$

and let $r(x)$ be the polynomial remainder when $p(x)$ is divided by $x^{4}+x^{3}+2 x^{2}+x+1$. Find the remainder when $|r(2008)|$ is divided by 1000 .
11. For a positive integer p, define the positive integer n to be p-safe if n differs in absolute value by more than 2 from all multiples of p. For example, the set of 10 -safe numbers is $\{3,4,5,6,7,13,14,15,16,17,23, \ldots\}$. Find the number of positive integers less than or equal to 10,000 which are simultaneously 7 -safe, 11 -safe, and 13 -safe
12. 2013 people sit in a circle, playing a ball game. When one player has a ball, he may only pass it to another player 3,11 , or 61 seats away (in either direction). If $f(A, B)$ represents the minimal number of passes it takes to get the ball from Person A to Person B, what is the maximal possible value of f ?
13. Find the number of positive integers n not greater than 2017 such that n divides $20^{n}+17 k$ for some positive integer k.

