Diophantine equations

If nothing stated, then find all positive integer solutions of the given equation.

1 Problems to think about

- 1. Find all positive integers x, y such that $\frac{1}{x} + \frac{1}{y} = \frac{1}{31}$.
- 2. Find all integers x, y such that $x^3 + y^3 = (x + y)^2$.
- 3. Find all positive integers x, y such that $x^5 y^2 = 4$.

2 Warm-Up

1. $(x^2 + 1)(y^2 + 1) + 2(x - y)(1 - xy) = 4(1 + xy)$ 2. $x^2 + y^2 + z^2 + 2xy + 2x(z - 1) + 2y(z + 1) = w^2$ 3. $\frac{1}{x} + \frac{1}{y} = \frac{1}{z}$ 4. $(x + 1)^2 + \ldots + (x + 2001)^2 = y^2$ 5. $x^3 + 2y^3 = 4z^3$

6. Prove that there are no positive integers x, k and $n \ge 2$ such that $x^2 + 1 = k(2^n - 1)$.

3 Problems

- 1. $x^3 + y^3 + z^3 3xyz = 101$.
- 2. $x^3 + (x+1)^3 + \ldots + (x+7)^3 = y^3$ in \mathbb{Z}
- 3. Prove, that $x^3 + y^3 + z^3 = x^2 + y^2 + z^2$ has infinite number of solutions in \mathbb{Z}
- 4. $5^x 7^y + 4 = 3^z$
- 5. $4xy x y = z^2$
- 6. Let a and b be positive integers such that ab+1 divides a^2+b^2 . Prove that $\frac{a^2+b^2}{ab+1}$ is a perfect square.