JV: Modular Inverses

Gunmay Handa

1 Warm-up Questions

1. Find all values of x such that $37 x \equiv 25(\bmod 39)$.
2. (Wilson's Theorem) Let p be a prime. Show that $(p-1)!\equiv-1(\bmod p)$.
3. Determine the remainder when 2^{2015} is divided by 2017 .

2 Problems

1. Find all the values of x such that $31 x \equiv 1(\bmod 37)$.
2. Find all solutions x to the following equations (or state that none exist).
(a) $7 x \equiv 1(\bmod 24)$.
(b) $6 x \equiv 1(\bmod 22)$.
(c) $18 x \equiv 20(\bmod 45)$.
(d) $48 x \equiv 20(\bmod 247)$.
3. Compute all integer solutions (x, y) to $17 x+53 y=1$.
4. (CMIMC 2016) Determine the smallest positive prime p which satisfies the congruence

$$
p+p^{-1} \equiv 25 \quad(\bmod 143) .
$$

Here, p^{-1} as usual denotes multiplicative inverse.
5 . Let n be the integer such that

$$
1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{23}=\frac{n}{23!}
$$

Compute the remainder when n is divided by 13 .
6. Let p be an odd prime. Prove that $1^{2} \cdot 3^{2} \ldots \cdot(p-2)^{2} \equiv 1(\bmod p)$.
7. Let a, n be natural numbers such that $\operatorname{gcd}(a, n)=1$. Prove that

$$
\{a(\bmod n), 2 a(\bmod n), 3 a(\bmod n), \ldots,(n-1) a(\bmod n)\}=\{1,2, \ldots, n-1\}
$$

3 Challenge Problems

1. (IMO 1996) The positive integers a and b are such that the numbers $15 a+16 b$ and $16 a-15 b$ are both squares of positive integers. What is the least possible value that can be taken on by the smaller of these two squares?
2. (Wolstenholme's Theorem) Let $p>5$ be a prime. Show that p^{2} divides the numerator of the expression

$$
1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{p-1} .
$$

Varsity: Chinese Remainder Theorem

David Altizio

4 Warm-up Questions

1. Here are a few questions to help you get re-acquainted with modular arithmetic.
(a) Compute the remainder when $24^{50}-15^{50}$ is divided by 13 .
(b) Let $N=\overline{a_{0} a_{1} a_{2} \ldots a_{n}}$ be an integer. Prove the divisibility rule for 9: N is divisible by 9 if and only if

$$
a_{0}+a_{1}+a_{2}+\cdots+a_{n}
$$

is also divisible by 9 .
(c) Characterize all integer solutions (x, y) to the Diophantine equation $47 x+59 y=1$. Hence solve the equation $47 x \equiv 1(\bmod 59)$.
2. (Concepts of Mathematics) Suppose m and n are relatively prime positive integers, and let a and b be arbitrary integers.
(a) Let r and s be integers such that $m r \equiv 1(\bmod n)$ and $n s \equiv 1(\bmod m)$. Find an integer value of x in terms of a, b, m, n, r, s satisfying $x \equiv a(\bmod n)$ and $x \equiv b(\bmod n)$.
(b) Suppose x and y are integers such that $x \equiv a(\bmod n)$ and $x \equiv b(\bmod m)$, and also $y \equiv a(\bmod n)$ and $y \equiv b(\bmod m)$. Show that $x \equiv y(\bmod m n)$.

5 Examples

1. Solve the system of equations

$$
x \equiv 2 \quad(\bmod 5) \quad \text { and } \quad x \equiv 8 \quad(\bmod 11) .
$$

2. (AMC 10B 2011) What is the hundreds digit of 2011^{2011} ?
3. (USAMO 2008) Prove that for each positive integer n, there are pairwise relatively prime integers $k_{0}, k_{1}, \ldots, k_{n}$, all strictly greater than 1 , such that $k_{0} k_{1} \ldots k_{n}-1$ is the product of two consecutive integers.

6 Problems

1. (Concepts of Mathematics) Determine the unknown digits a and b in the five-digit number $3 a 27 b$ given that $3 a 27 b \equiv 1(\bmod 9)$ and $3 a 27 b \equiv 9(\bmod 11)$.
2. (Brilliant) What are the last two digits of 49^{19} ?
3. (AMC 10B 2017) Let $N=123456789101112 \ldots 4344$ be the 79 -digit number that is formed by writing the integers from 1 to 44 in order, one after the other. What is the remainder when N is divided by 45 ?
4. Let n be a positive integer. Determine the number of positive integers $x \in\{1,2, \ldots, n\}$ such that $x^{2} \equiv x(\bmod n)$.
5. (AIME II 2012) For a positive integer p, define the positive integer n to be p-safe if n differs in absolute value by more than 2 from all multiples of p. For example, the set of 10 -safe numbers is $\{3,4,5,6,7,13,14,15,16,17,23, \ldots\}$. Find the number of positive integers less than or equal to 10,000 which are simultaneously 7 -safe, 11 -safe, and 13 -safe.
6. (CMIMC 2016, Andrew Kwon) Define a tasty residue of n to be an integer $1 \leq a \leq n$ such that there exists an integer $m>1$ satisfying

$$
a^{m} \equiv a \quad(\bmod n)
$$

Find the number of tasty residues of 2016.
7. (AoPS) The integer p is a 50 digit prime number. When its square is divided by 120 , the remainder is not one. What is the remainder?
8. (Brilliant) Show that there exist 99 consecutive integers $a_{1}, a_{2}, \ldots, a_{99}$ such that each a_{i} is divisible by the cube of some integer greater than 1.

7 Challenge Problem

1. (Lemma used in CMIMC 2019) Let $p_{1}, p_{2}, \cdots, p_{n}$ be primes and $e_{1}, e_{2}, \cdots, e_{n} \in\{-1,1\}$. Prove there exists a prime q with the property that $\left(\frac{p_{1}}{q}\right)=e_{i}$ for all $1 \leq i \leq n$. (Here $\left(\frac{p}{q}\right)$ is the Legendre symbol which is 1 if p is a quadratic residue modulo q and -1 otherwise.)
