Bases

JV Practice 6/14/20
Evan Fang

Warmup

In the following, we write $\overline{a_{0} a_{1} a_{2} \ldots a_{n}}$ to represent $\overline{a_{0} a_{1} a_{2} \ldots a_{n}}$ written in base b. We usually use base 10 so in the following examples I will not put a subscript if the number is represented in base 10. If you haven't seen this before, try using these examples to help you do the warmup:

$$
251_{8}=2 \cdot 8^{2}+5 \cdot 8+1 \cdot 8^{0}=128+40=169=3 \cdot 7^{2}+3 \cdot 7+1 \cdot 7^{0}=331_{7}
$$

1. Convert 10_{7} into base 10 .
2. Convert 321_{9} into base 10 .
3. Convert 284 base 10 into base 6 .
4. Convert $1 a_{11}$ to base 10 .
5. Convert 111011010000_{2} into base 8.

Problems

1. Express $1101_{2} \times 1111_{2}$ in base 10 .
2. Express 0.25 in base 10 as a decimal in base 2 .
3. Express $a b c_{16}$ in base 10 .
4. Express $\frac{8}{23}$ in base 10 as a number in base 7 .
5. A rational number written in base eight is $\underline{a b} . \underline{c d}$, where all digits are nonzero. The same number in base twelve is $\underline{b b}$. $\underline{b a}$. Find the base-ten number $\underline{a b c}$.
6. Find the value of the base b such that the following addition problem is correct:

$$
6651_{b}+115_{b}=10066_{b}
$$

7. Find the sum of all the natural numbers that are three-digit palindromes when expressed in base 5. Express your answer in base 5 .
8. How many of the numbers $\frac{1}{1}, \frac{1}{2}, \frac{1}{3}, \ldots, \frac{1}{30}$ have non-terminating expansions in base 30 ?
9. (a) How many 0 s are at the end of 15 ! when written in base 12 ?
(b) How many 0s are at the end of 100 ! when written in base 24 ?
10. In base 10, the number 2013 ends in the digit 3 . In base 9 , on the other hand, the same number is written as $(2676)_{9}$ and ends in the digit 6 . For how many positive integers b does the base- b-representation of 2013 end in the digit 3
11. For some positive integer k, the repeating base- k representation of the (base-ten) fraction $\frac{7}{51}$ is $0 . \overline{23}_{k}=0.232323 \ldots k$. What is k ?
12. What is the largest positive integer n less than 10,000 such that in base $4, n$ and $3 n$ have the same number of digits; in base $8, n$ and $7 n$ have the same number of digits; and in base 16 , n and $15 n$ have the same number of digits? Express your answer in base 10.
