Exponents

JV Practice 6/14/20
Evan Fang

Warmup

1. Find n such that

$$
2^{n}=\frac{\left(2^{2} \cdot 2^{3}\right)^{2}}{4^{-3 / 2} \cdot 64^{2 / 3}}
$$

2. Find the remainder when
(a) 3^{3} is divided by 4
(b) 3^{4} is divided by 4
(c) 3^{120} is divided by 4 .
3. Find all values of x such that $5^{x}=125$.

Problems

1. Given that $3^{2 x+4}=9^{2 x-6}$ what are the possible values of x ?
2. Given that $2^{x}=12$ find $2^{2 x-1}$
3. Find the units digit of 235413^{235}
4. What is the smallest positive integer x such that 2^{x} is greater than five million?
5. Find the value of

$$
\frac{2^{2004}+2^{2001}}{2^{2003}-2^{2000}}
$$

6. Find the value of x that satisfies the equation

$$
25^{-2}=\frac{5^{48 / x}}{5^{26 / x} \cdot 25^{17 / x}}
$$

7. Let m be the number of digits in 2^{2006} and n be the number of digits in 5^{2006}. Find $m+n$.
8. Given that $3^{8} \cdot 5^{2}=a^{b}$ where both a and b are positive integers. Find the minimum possible value of $a+b$.
9. What is the minimum number of digits to the right of the decimal point needed to express the fraction

$$
\frac{123456789}{2^{4} \cdot 5^{26}}
$$

as a decimal?
10. Determine the smallest element in the set

$$
S=\left\{\left(\frac{1}{2}\right)^{1 / 2},\left(\frac{1}{3}\right)^{1 / 3},\left(\frac{1}{4}\right)^{1 / 4},\left(\frac{1}{5}\right)^{1 / 5},\left(\frac{1}{6}\right)^{1 / 6}\right\}
$$

11. Let the sequence $\left\{x_{n}\right\}$ be defined as $x_{1} \in\{5,7\}$ and for $k \geq 1, x_{k+1} \in\left\{5^{x_{k}}, 7^{x_{k}}\right\}$. For example, all the possible value of x_{3} are $5^{5^{5}}, 5^{5^{7}}, 5^{7^{5}}, 5^{7^{7}}, 7^{5^{5}}, 7^{5^{7}}, 7^{7^{5}}, 7^{7^{7}}$. Determine the sum of all possible values of the last two digits of x_{2012}
12. Suppose that $60^{a}=3$ and $60^{b}=5$. Compute the value of $12^{\frac{1-a-b}{2-2 b}}$.
13. Find all ordered pairs (x, y) of real numbers such that

$$
3^{x^{2}-2 x y}=1 \quad \text { and } \quad x^{2}=y+3
$$

14. Compute all real numbers x such that $\sqrt[3]{8+x}+\sqrt[3]{8-x}=1$
15. If k and n are integers and $\left(3^{2006}+2006\right)^{2}-\left(3^{2006}-2006\right)^{2}=k \cdot 3^{n}$, where k is not divisible by 3 , compute $\frac{n+k}{2006}$

Only do the next section if you finish all the previous problems!

Review/Extensions

1. The number n can be written in base 14 as $\underline{a b c}$, can be written in base 15 as $\underline{a c b}$, and can be written in base 6 as $\underline{a c a c}$, where $a>0$. Find the base 10 representation of n.
2. Find the number of positive integers m for which there exist nonnegative integers $x_{0}, x_{1}, x_{2}, \ldots, x_{2011}$ such that

$$
m^{x_{0}}=\sum_{k=1}^{2011} m^{x_{k}}
$$

3. Find the number of permutations $\left(a_{1}, a_{2}, \ldots, a_{30}\right)$ of $1,2, \ldots, 30$ such that for $m \in\{2,3,5\}$, m divides $a_{n+m}-a_{n}$ for all integers n with $1 \leq n<n+m \leq 30$.
