Modular Arithmetic

JV Practice 7/19/20

Anish Sevekari

Warmup

1. Find the units place of
(a) 11^{2020}
(b) 7^{2020}
(c) 147^{2020}
2. Is $31^{57}-43^{61}$ a multiple of 11 ?
3. Explain why divisibility rule of 4 , that is, a number is divisible by 4 if and only if the number formed by its last 2 digits is divisible by 4 .

Basic Properties and Definitions

We say that a is congruent to b modulo n , written as

$$
a \equiv b \quad(\bmod n)
$$

if a and b leave the same remainder after dividing by n. This is equivalent to saying that $n \mid a-b$ (n divides $a-b$).

If $a \equiv b(\bmod n)$ and $c \equiv d(\bmod n)$, then

$$
\begin{array}{rr}
a+c \equiv b+d & (\bmod n) \\
a-c \equiv b-d & (\bmod n) \\
a \times c \equiv b \times d & (\bmod n)
\end{array}
$$

Problems

1. Find the remainder when 555 is divided by 13 (Using Modular Arithmetic!)
2. Find the remainder when 555^{2} is divided by 13 .
3. Find the remainder when $7^{7^{7}}$ is divided by 10 .
4. Divisibility test for 3: A natural number written as $\overline{a_{n} a_{n-1} \ldots a_{1} a_{0}}$ in base 10 is divisible by 3 if and only if sum of its digits, that is $a_{0}+a_{1}+\cdots+a_{n}$ is divisible by 3 .
5. Divisibility test for 11: A natural number written as $\overline{a_{n} a_{n-1} \ldots a_{1} a_{0}}$ in base 10 is divisible by 11 if and only if $a_{0}-a_{1}+a_{2}-\cdots+(-1)^{n} a_{n}$ is divisible by 11 .
6. Find x such that $2 x \equiv 23(\bmod 39)$.
7. Find x such that $3 x \equiv 22(\bmod 37)$.
8. Is there a x such that $6 x \equiv 22(\bmod 39)$.
9. Find the remainder when $1 \cdot 3 \cdot \ldots \cdot 2019-2 \cdot 4 \cdot \ldots \cdot 2020$ is divided by 2021 .
