Geometry inequalities 2

1. Warm-up

1. In triangle $A B C$, we know that $\angle A>\angle B$. Prove that $B C>\frac{1}{2} A B$.
2. From the point M, which does not belong to the line a, the perpendicular $M D$ is drawn, and let A and B are some points on line a (that are different from point D) such that point D belongs to the segment $A B$. Prove that if $D A>D B$, then $M A>M B$.

2. Problems

1. The perpendicular bisector to the side $B C$ of $\triangle A B C$ intersects side $A B$ at point D, and the continuation of side $A C$ beyond point A at point E. Prove that $A D<A E$.
2. An angle-bisector $B D$ is drawn in the $\triangle A B C$. Prove that $A B>A D$.
3. The peninsula has an acute-angle shape, inside which Dan build his house. How does Dan, starting from his house, get to the one coast of the peninsula, then to the another and return home, passing along the shortest path?
4. On the sides $A B$ and $A C$ of $\triangle A B C$, choose points P and Q so that $P B=Q C$. Prove that $P Q<B C$.
5. Prove that the area of convex quadrilateral $A B C D$ doesn't exceed $\frac{1}{2}(A B \cdot B C+A D \cdot D C)$.
6. Prove that in any triangle, the smaller side corresponds to the smaller median.

