Double Summation 1

Varsity Practice 7/5/20
C.J. Argue

Look over the following sums that will be useful to know.

1. For any integers n, k,

$$
\sum_{i=0}^{k}\binom{n+i}{i}=\binom{n+k+1}{n+1}=\sum_{i=0}^{k}\binom{n+i}{n}
$$

This is known as the hockey-stick identity.
2. The Basel Identity

$$
\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}
$$

3. For any real x,

$$
\sum_{n=0}^{\infty} \frac{x^{n}}{n!}=e^{x}
$$

1 Warm-ups

1. (NYCIML F12) Compute the sum

$$
\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{6}+\frac{1}{8}+\frac{1}{9}+\frac{1}{12}+\ldots
$$

which includes all terms of the form $\frac{1}{2^{n} 3^{m}}$ for nonnegative integers n, m.
2. (Folklore) Compute the sum

$$
\sum_{n=1}^{\infty} \frac{n}{2^{n}} .
$$

Ask yourself: there's only a single sum here. What does this have to do with double summation?

2 Problems

- HMMT $=$ Harvard/MIT Math Tournament
- PUMaC $=$ Princeton University Math competition
- $\mathrm{RMT}=$ Rice Math Tournament

1. (HMMT 2008) Compute the sum

$$
\sum_{n=1}^{\infty} \sum_{k=1}^{n-1} \frac{k}{2^{n+k}}
$$

2. (HMMT 2017) Compute the sum

$$
\sum_{1 \leq a<b<c} \frac{1}{2^{a} 3^{b} 5^{c}}
$$

3. (cf. RMT 2010) Compute the sum

$$
\sum_{j=0}^{2020} \sum_{i=1}^{2020}\binom{i}{j} .
$$

4. (cf. HMMT 2013) Compute

$$
\sum_{a=0}^{\infty} \sum_{b=0}^{\infty} \sum_{c=0}^{\infty} \frac{a+b+c}{3^{a+b+c}}
$$

The answer to this version of the problem is $\frac{81}{16}$.
5. (HMMT 2020) A function $f: A \rightarrow A$ is called idempotent if $f(f(x))=f(x)$ for all $x \in A$. Let I_{n} be the number of idempotent functions from $\{1,2, \ldots, n\}$ to itself. Compute the sum

$$
\sum_{n=1}^{\infty} \frac{I_{n}}{n!} .
$$

Don't get too stuck on coming up with the expression for I_{n}. Ask for help! Evaluating the sum at the end is the really nice part.
6. (RMT 2008) Compute the sum

$$
\sum_{x=0}^{\infty} \sum_{y=0}^{\infty} \frac{1}{2^{x+y+|x-y|}}
$$

7. (RMT 2016) Compute the sum

$$
\sum_{m=1}^{2020} \sum_{k=m-2020}^{m-2} \frac{1}{m^{2}+k^{2}-2 m k-m+k} .
$$

8. (RMT 2011) Compute the sum

$$
\sum_{n=1}^{\infty} \frac{(7 n+32) \cdot 3^{n}}{n(n+2) 4^{n}}
$$

9. (HMMT 2018) Compute the sum

$$
\sum_{k=1}^{60} \sum_{n=1}^{k} \frac{n^{2}}{61-2 n}
$$

10. (C.J.) Compute the sum

$$
\sum_{n=0}^{\infty}\binom{n+2}{2} \cdot \frac{n}{3^{n}}
$$

