Modular Arithmetic

V Practice 7/19/20 Matthew Shi

1 Modular Arithmetic

- 1. Compute $2019^{2018} \mod 2020$.
- 2. Compute x such that $23x \equiv 1 \mod 41$.
- 3. Compute 33! mod 37.
- 4. Find the smallest positive integer n such that 107n has the same last two digits as n.
- 5. Compute the largest integer that has the same number of digits when written in base 5 and when written in base 7. Express your answer in base 10.
- 6. Compute $2018^{2019} \mod 2020$.
- 7. What are the last 8 digits of 11 * 101 * 1001 * 10001 * 100001 * 1000001 * 111?
- 8. Define the sequence a_n via $a_1 = 7$ and $a_k = 7^{a_{k-1}}$. Find the last two digits of a_{2007} .

2 Modular Polynomials

- 1. Let $f(x,y) = x^2 + y^2$. For how many pairs (x,y) where $x, y \in [0,30]$ does $f(x,y) \equiv 5 \mod 9$?
- 2. Is 23 a square mod 41? Is 15 a square mod 41?
- 3. What's the smallest n > 1 such that $n^3 \equiv n \mod 1000$? What if we wanted instead $n^2 \equiv n$?
- 4. Let $f(x) = \sum_{i=1}^{7} x^i$. Let S = f(7) + f(11) + f(13). Compute S mod 17.
- 5. Find the largest integer n such that $7^{2048} 1$ is divisible by 2^n .
- 6. Let $f(x) = \sum_{i=1}^{6} ix^{i}$. Let $S = [f(6)]^{5} + [f(10)]^{3} + [f(15)]^{2}$. Compute S mod 30.