Modular Arithmetic and Polynomials

Varsity Practice 7/26/20 Matthew Shi

1 Vieta's

Given a polynomial like $a_n x^n + ... + a_1 x^1 + a_0 x^0$, we can always factor it into $(x-r_1)(x-r_2)...(x-r_n)$. Then, what Vieta's tells us to do is to look at a_{n-k} ; this is the sum of all products of k different roots.

As an example, $x^3 + 2x^2 + 3x + 4$ has 3 roots x, y, z. These roots satisfy:

xyz = 4; xy + yz + xz = 3; x + y + z = 2

So whenever you get a polynomial, you can turn it into this series of equations. Solving for specifically x, y or z ends up giving you back your original polynomial.

2 Newton's

Given a polynomial like $a_n x^n + ... + a_1 x^1 + a_0 x^0$, suppose it has roots $r_1, ..., r_n$. Then let:

 $P_1 = r_1 + \ldots + r_k P_2 = r_1^2 + \ldots + r_k^2 \ldots P_k = r_1^k + \ldots + r_k^k$

Then Newton's sums tells us that

$$a_n P_1 + a_{n-1} = 0; a_n P_2 + a_{n-1} P_1 + 2a_{n-2} = 0; a_n P_3 + a_{n-1} P_2 + a_{n-2} P_1 + 3a_{n-3} = 0; \dots$$

where $a_j = 0$ for j < 0. Proof: Um... look it up on AoPS. It's pretty cool.

3 Problems

- 1. Suppose $x^2 + y^2 = 1$ and $x^4 + y^4 = \frac{17}{18}$. Find xy.
- 2. Let $p(x) = x^6 + 3x^5 3x^4 + ax^3 + bx^2 + cx + d$. Given that all the roots of this polynomial are either m or n (which are both integers), compute p(2).
- 3. Suppose a polynomial $x^3 x^2 + bx + c$ has roots a, b, c. What is the square of the minimum value of abc?
- 4. Let x, y, z be real numbers which sum to 0. Find the maximum value of:

$$\frac{xy+yz+zx}{x^2+y^2+z^2}$$

- 5. Karina starts with $p_1 = x^2 + x + k$. She notices that this has two integer roots $a_1 \ge b_1$. So she writes a new polynomial $p_2 = x^2 + a_1x + b_1$. She notices that this one also has integer roots a_2, b_2 so she writes the new polynomial $p_3 = x^2 + a_2x + b_2$. She continues doing this until she gets to p_7 and finds that it doesn't have integer roots. What's the largest possible value of k?
- 6. Let a, b, c be the roots of $x^3 x + 1$. Find $\frac{1}{a+1} + \frac{1}{b+1} + \frac{1}{c+1}$.
- 7. Let $f(x) = 3x^3 5x^2 + 2x 6$. If the roots are *a*, *b*, *c*, find:

$$(\frac{1}{a-2})^2 + (\frac{1}{b-2})^2 + (\frac{1}{c-2})^2$$

8. Let a, b, c be the roots of $x^3 - 9x^2 + 11x - 1$, and let $s = \sqrt{a} + \sqrt{b} + \sqrt{c}$. Find $s^4 - 12s^2 - 18s$.