Modular Arithmetic and Polynomials

Varsity Practice 7/26/20
Matthew Shi

1 Vieta's

Given a polynomial like $a_{n} x^{n}+\ldots+a_{1} x^{1}+a_{0} x^{0}$, we can always factor it into $\left(x-r_{1}\right)\left(x-r_{2}\right) \ldots\left(x-r_{n}\right)$. Then, what Vieta's tells us to do is to look at a_{n-k}; this is the sum of all products of k different roots.

As an example, $x^{3}+2 x^{2}+3 x+4$ has 3 roots x, y, z. These roots satisfy:

$$
x y z=4 ; x y+y z+x z=3 ; x+y+z=2
$$

So whenever you get a polynomial, you can turn it into this series of equations. Solving for specifically x, y or z ends up giving you back your original polynomial.

2 Newton's

Given a polynomial like $a_{n} x^{n}+. .+a_{1} x^{1}+a_{0} x^{0}$, suppose it has roots r_{1}, \ldots, r_{n}. Then let:

$$
P_{1}=r_{1}+\ldots+r_{k} P_{2}=r_{1}^{2}+\ldots+r_{k}^{2} \ldots P_{k}=r_{1}^{k}+\ldots+r_{k}^{k}
$$

Then Newton's sums tells us that

$$
a_{n} P_{1}+a_{n-1}=0 ; a_{n} P_{2}+a_{n-1} P_{1}+2 a_{n-2}=0 ; a_{n} P_{3}+a_{n-1} P_{2}+a_{n-2} P_{1}+3 a_{n-3}=0 ; \ldots
$$

where $a_{j}=0$ for $j<0$. Proof: Um... look it up on AoPS. It's pretty cool.

3 Problems

1. Suppose $x^{2}+y^{2}=1$ and $x^{4}+y^{4}=\frac{17}{18}$. Find $x y$.
2. Let $p(x)=x^{6}+3 x^{5}-3 x^{4}+a x^{3}+b x^{2}+c x+d$. Given that all the roots of this polynomial are either m or n (which are both integers), compute $p(2)$.
3. Suppose a polynomial $x^{3}-x^{2}+b x+c$ has roots a, b, c. What is the square of the minimum value of $a b c$?
4. Let x, y, z be real numbers which sum to 0 . Find the maximum value of:

$$
\frac{x y+y z+z x}{x^{2}+y^{2}+z^{2}}
$$

5. Karina starts with $p_{1}=x^{2}+x+k$. She notices that this has two integer roots $a_{1} \geq b_{1}$. So she writes a new polynomial $p_{2}=x^{2}+a_{1} x+b_{1}$. She notices that this one also has integer roots a_{2}, b_{2} so she writes the new polynomial $p_{3}=x^{2}+a_{2} x+b_{2}$. She continues doing this until she gets to p_{7} and finds that it doesn't have integer roots. What's the largest possible value of k ?
6. Let a, b, c be the roots of $x^{3}-x+1$. Find $\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}$.
7. Let $f(x)=3 x^{3}-5 x^{2}+2 x-6$. If the roots are a, b, c, find:

$$
\left(\frac{1}{a-2}\right)^{2}+\left(\frac{1}{b-2}\right)^{2}+\left(\frac{1}{c-2}\right)^{2}
$$

8. Let a, b, c be the roots of $x^{3}-9 x^{2}+11 x-1$, and let $s=\sqrt{a}+\sqrt{b}+\sqrt{c}$. Find $s^{4}-12 s^{2}-18 s$.
