Logic and Definitions

C.J. Argue

Warm Up

1. True or false: if someone today has been alive since 1776 , then he signed the Declaration of Independence.
2. (Mathcamp) Given two sets of real numbers A and B, we say that A dominates B when for every $a \in A$ there exists $b \in B$ such that $a<b$. Find two, disjoint, non-empty sets A and B such that A dominates B and B dominates A .

Convergent Sequences

We say that the sequence a_{1}, a_{2}, \ldots of real numbers converges to the real number a if for every $\varepsilon>0$ there is some natural number n such that for all $i>n,\left|a_{i}-a\right|<\varepsilon$. In other words, however close you want the sequence a_{i} to get to a, it eventually gets that close, and stays that close.

1. Prove that the sequence $0,0,0, \ldots$ converges to 0 .
2. Suppose a_{1}, a_{2}, \ldots converges to a and b_{1}, b_{2}, \ldots converges to b.
(a) Let $c_{i}=a_{i}+b_{i}$. Prove that c_{1}, c_{2}, \ldots converges to $a+b$.
(b) Let $d_{i}=a_{i} \cdot b_{i}$. Prove that d_{1}, d_{2}, \ldots converges to $a b$.
3. Define rigorously what it means for the sequence a_{1}, a_{2}, \ldots to be:
(a) Bounded above.
(b) Monotonically increasing.
4. Prove that if a_{1}, a_{2}, \ldots is bounded above and monotonically increasing, then it converges to some real number a.

Modular Arithmetic

1. True or false: if x is an integer such that $x^{2} \equiv 3(\bmod 10)$ then $x \equiv 3(\bmod 10)$. Justify your answer.
2. Prove or disprove: if $a \equiv b(\bmod m)$ then $a^{2} \equiv b^{2}(\bmod m)$. Prove or disprove the converse.
3. Prove that an integer is divisible by 5 if and only if its last digit is 0 or 5 (written in base 10).

Homework-More Sequences

1. Show that a_{1}, a_{2}, \ldots converges to at most one number.
2. Define rigorously what it means for a sequence to be unbounded above. Then, show that if a_{1}, a_{2}, \ldots is unbounded above, then it does not converge to any real number a.
3. We say a sequence converges to ∞ if it grows without bound. Note that this is different from being unbounded above. For example, while $1,2,3,4, \ldots, n, \ldots$ is both unbounded above and converges to ∞, but $1,0,2,0,3,0,4,0, \ldots, n, 0, \ldots$ is unbounded above but does not converge to ∞ Define 'converging to ∞ rigorously, then use your definition to show that $1,2,4, \ldots, 2^{n}, \ldots$ converges to ∞.
