Writing more proofs

Misha Lavrov

ARML Practice 3/16/2014 and 3/23/2014

Warm-up

Using the quantifier notation on the reference sheet, and making any further definitions you need to, write the following:
"You can fool all the people some of the time, and some of the people all the time, but you cannot fool all the people all the time."

Warm-up

Using the quantifier notation on the reference sheet, and making any further definitions you need to, write the following:
"You can fool all the people some of the time, and some of the people all the time, but you cannot fool all the people all the time."

Let \mathbb{P} be the set of all people, \mathcal{T} the set of all times, and $F(p, t)$ the statement that person p can be fooled at time t. Then

$$
\begin{aligned}
& (\forall p \in \mathbb{P} \exists t \in \mathcal{T}: F(p, t)) \\
\wedge & (\exists p \in \mathbb{P} \forall t \in \mathcal{T}: F(p, t)) \\
\wedge & \neg(\forall p \in \mathbb{P} \forall t \in \mathcal{T}: F(p, t)) .
\end{aligned}
$$

Proving things: a case study

Problem

Prove that the harmonic series

$$
1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\cdots
$$

diverges.

Proving things: a case study

Problem

Prove that the harmonic series

$$
1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\cdots
$$

diverges.

Proof idea.

Round down $\frac{1}{3}+\frac{1}{4}$ to $\frac{1}{4}+\frac{1}{4}, \frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}$ to $\frac{1}{8}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8}$, and so on.

Key points to hit

- It's good to be specific about the rounding: $\frac{1}{n}$ rounds down to $\frac{1}{2^{k}}$ chosen so that $2^{k-1}<n \leq 2^{k}$.

This makes it easy to show that there are 2^{k-1} terms that round down to $\frac{1}{2^{k}}$, contributing a total of $\frac{1}{2}$.

- One possible punchline: $1+\frac{1}{2}+\frac{1}{2}+\cdots$ diverges, and the harmonic series is at least as large.
- Better (fewer infinities): The first 2^{k} terms of the harmonic series total at least $1+\frac{k}{2}$, which can be arbitrarily large.

What is divergence, anyway?

Say we have the infinite series $a_{1}+a_{2}+a_{3}+\cdots$. We call $S_{n}=\sum_{k=1}^{n} a_{k}$ the n-th partial sum.

What is divergence, anyway?

Say we have the infinite series $a_{1}+a_{2}+a_{3}+\cdots$. We call $S_{n}=\sum_{k=1}^{n} a_{k}$ the n-th partial sum.

When all the a_{k} are positive, the infinite series diverges if and only if the sequence of partial sums tends to infinity. This happens iff:

- The partial sums become arbitrarily large if we take sufficiently many terms.
- Which is to say, for all M there is an index n such that S_{n} exceeds M.
- $\forall M \exists n: S_{n}>M$.

What is divergence, anyway?

Say we have the infinite series $a_{1}+a_{2}+a_{3}+\cdots$. We call $S_{n}=\sum_{k=1}^{n} a_{k}$ the n-th partial sum.

When all the a_{k} are positive, the infinite series diverges if and only if the sequence of partial sums tends to infinity. This happens iff:

- The partial sums become arbitrarily large if we take sufficiently many terms.
- Which is to say, for all M there is an index n such that S_{n} exceeds M.
- $\forall M \exists n: S_{n}>M$.

When a series contains negative numbers, things are more complicated: e.g.,

$$
1-1+1-1+1-1+\cdots .
$$

Proving a dependence

We want to prove that $\forall M \exists n: S_{n}>M$, where $S_{n}=\sum_{k=1}^{n} \frac{1}{k}$. How?

Proving a dependence

We want to prove that $\forall M \exists n: S_{n}>M$, where $S_{n}=\sum_{k=1}^{n} \frac{1}{k}$. How?

Let M be any real number.

Proving a dependence

We want to prove that $\forall M \exists n: S_{n}>M$, where $S_{n}=\sum_{k=1}^{n} \frac{1}{k}$. How?

Let M be any real number. Take $n=2^{2 M}$.

Proving a dependence

We want to prove that $\forall M \exists n: S_{n}>M$, where $S_{n}=\sum_{k=1}^{n} \frac{1}{k}$. How?

Let M be any real number. Take $n=2^{2 M}$. Then

$$
\begin{aligned}
S_{n} & =1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{2^{2 M}} \\
& =1+\left(\frac{1}{2}\right)+\left(\frac{1}{3}+\frac{1}{4}\right)+\cdots+\left(\frac{1}{2^{2 M-1}+1}+\cdots+\frac{1}{2^{2 M}}\right) \\
& >1+\underbrace{\frac{1}{2}+\frac{1}{2}+\cdots+\frac{1}{2}}_{2 M \text { times }}=M+1>M .
\end{aligned}
$$

Therefore the harmonic series diverges.

Proving a dependence

We want to prove that $\forall M \exists n: S_{n}>M$, where $S_{n}=\sum_{k=1}^{n} \frac{1}{k}$. How?

Let M be any real number. Take $n=2^{2 M}$. Then

$$
\begin{aligned}
S_{n} & =1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{2^{2 M}} \\
& =1+\left(\frac{1}{2}\right)+\left(\frac{1}{3}+\frac{1}{4}\right)+\cdots+\left(\frac{1}{2^{2 M-1}+1}+\cdots+\frac{1}{2^{2 M}}\right) \\
& >1+\underbrace{\frac{1}{2}+\frac{1}{2}+\cdots+\frac{1}{2}}_{2 M \text { times }}=M+1>M .
\end{aligned}
$$

Therefore the harmonic series diverges.
[Therefore for any M, there is some n such that $S_{n}>M$, so S_{n} tends to infinity, and therefore the harmonic series diverges.]

Exercises

(1) "There are arbitrarily large numbers of the form $111 \ldots 11$ which are divisible by 7 ."

- Rephrase this statement as "For all there exists ... such that"
- Then prove it. (Hint: $111111=15873 \cdot 7$.)
(2) The infinite series $1+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\frac{1}{4^{2}}+\cdots$ converges to $\frac{\pi^{2}}{6}$. This is obviously kind of tricky to prove, so we won't.
- Prove that $1+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\frac{1}{4^{2}}+\cdots \leq 2$. (Hint: a similar approach works.)
- What would you need to show to prove that the sequence of partial sums DOES NOT tend to infinity, using the formal definition?
(3) A number x is even if $x=2 y$ for some y, and odd if $x=2 y+1$ for some y. Prove that all numbers are either even or odd.

Various kinds of mathematical statements

- $\exists x$: "Odd numbers exist".

To prove this, you give an example of an odd number.

- $\forall x$: "All numbers are equal to themselves".

To prove this, you say "Let n be any number", and then prove that $n=n$.

Various kinds of mathematical statements

- $\exists x$: "Odd numbers exist".

To prove this, you give an example of an odd number.

- $\forall x$: "All numbers are equal to themselves".

To prove this, you say "Let n be any number", and then prove that $n=n$.

- $\forall x \exists y$: See previous slides.
- $\exists x \forall y$: "There is a number x such that $x+y=y$ for all y."

To prove this, you pick an x, and then do the \forall proof.

Various kinds of mathematical statements

- $\exists x$: "Odd numbers exist".

To prove this, you give an example of an odd number.

- $\forall x$: "All numbers are equal to themselves".

To prove this, you say "Let n be any number", and then prove that $n=n$.

- $\forall x \exists y$: See previous slides.
- $\exists x \forall y$: "There is a number x such that $x+y=y$ for all y."

To prove this, you pick an x, and then do the \forall proof.

- $\forall x \exists y \forall z$ "For all x, there is a y such that $(x+y)+z=z$ for all z.'
- ...

Proving things about sets

This is an exercise in unpacking notation. (You should have a reference sheet for all the notation I will use.) For example:

Theorem
$A \cap B \subseteq A$.

Proving things about sets

This is an exercise in unpacking notation. (You should have a reference sheet for all the notation I will use.) For example:

Theorem
$A \cap B \subseteq A$.

Proof.

First of all, $A \cap B \subseteq A$ means "for all $x \in A \cap B, x \in A$."

Proving things about sets

This is an exercise in unpacking notation. (You should have a reference sheet for all the notation I will use.) For example:

Theorem
$A \cap B \subseteq A$.

Proof.

First of all, $A \cap B \subseteq A$ means "for all $x \in A \cap B, x \in A$."

Suppose $x \in A \cap B$. Then $x \in A$ and $x \in B$. Therefore $x \in A$.

Proving things about sets

This is an exercise in unpacking notation. (You should have a reference sheet for all the notation I will use.) For example:

Theorem

$A \cap B \subseteq A$.

Proof.

First of all, $A \cap B \subseteq A$ means "for all $x \in A \cap B, x \in A$."

Suppose $x \in A \cap B$. Then $x \in A$ and $x \in B$. Therefore $x \in A$.

Therefore $\forall x \in A \cap B: x \in A$, which means $A \cap B \subseteq A$.

Exercises in sets

Prove the following:
(1) $A \subseteq A \cup B$.
(2) $\emptyset \subseteq A$.
(3) $A \cup \emptyset=A$.
(1) $A \subseteq(A-B) \cup B$.
(0) $(A-B) \cap(B-A)=\emptyset$.
(0) Let $A \Delta B$ denote $(A-B) \cup(B-A)$. Prove that

$$
(A \Delta B) \Delta(B \Delta C) \Delta(A \Delta C)=\emptyset
$$

Second warmup

(1) Prove that if $\sqrt{2}$ is an integer, then it is odd.
(2) Prove that if $\sqrt{2}$ is rational, then it is an integer.

Second warmup

(1) Prove that if $\sqrt{2}$ is an integer, then it is odd.

Since $1<2<4$, we have $\sqrt{1}<\sqrt{2}<\sqrt{4}$, so $1<\sqrt{2}<2$, and therefore $\sqrt{2}$ is not an integer. Therefore it is true that if $\sqrt{2}$ is an integer, it is odd.
(2) Prove that if $\sqrt{2}$ is rational, then it is an integer.

Second warmup

(1) Prove that if $\sqrt{2}$ is an integer, then it is odd.

Since $1<2<4$, we have $\sqrt{1}<\sqrt{2}<\sqrt{4}$, so $1<\sqrt{2}<2$, and therefore $\sqrt{2}$ is not an integer. Therefore it is true that if $\sqrt{2}$ is an integer, it is odd.
(2) Prove that if $\sqrt{2}$ is rational, then it is an integer.

It suffices to prove that $\sqrt{2}$ is irrational.
Suppose $\sqrt{2}=\frac{p}{q}$, where p and q are integers. Then $p^{2}=2 q^{2}$. But the highest power of 2 dividing p^{2} is even, while the highest power of 2 dividing $2 q^{2}$ is odd. This is a contradiction, so $\sqrt{2}$ cannot be rational.

A simple induction proof

Theorem

For $n \geq 4, n!>2^{n}$.

Proof.

Let $n=4$; then $n!=24>16=2^{n}$.
If $n>4$ and $(n-1)!>2^{n-1}$, then

$$
n!=n \cdot(n-1)!>n \cdot 2^{n-1}>2 \cdot 2^{n-1}=2^{n} .
$$

By induction, we have $n!>2^{n}$ for all $n \geq 4$.

The AM-GM inequality

Theorem (AM-GM)

For real numbers $a_{1}, \ldots, a_{n} \geq 0$, if $\mathrm{AM}=\frac{a_{1}+\cdots+a_{n}}{n}$ and $\mathrm{GM}=\left(a_{1} \cdot a_{2} \cdots a_{n}\right)^{1 / n}$, then $\mathrm{AM} \geq \mathrm{GM}$.

Proof outline.

We prove three things:
(1) That $\mathrm{AM} \geq \mathrm{GM}$ for $n=2$.
(2) That the n case implies the $2 n$ case.
(3) That the n case implies the $n-1$ case.

These implications give us a path to any value of n from the base case of 2 (though this claim needs proof). For example, to prove $n=17$, we go

$$
2 \Rightarrow 4 \Rightarrow 3 \Rightarrow 6 \Rightarrow 5 \Rightarrow 10 \Rightarrow 9 \Rightarrow 18 \Rightarrow 17
$$

By induction, $\mathrm{AM} \geq \mathrm{GM}$ for all n.

The AM-GM inequality

(1) Check that $\mathrm{AM} \geq \mathrm{GM}$ for $n=2$.

Start with $\left(\sqrt{a_{1}}-\sqrt{a_{2}}\right)^{2} \geq 0$. This means $a_{1}+a_{2}-2 \sqrt{a_{1} a_{2}} \geq 0$, or $\frac{a_{1}+a_{2}}{2} \geq \sqrt{a_{1} a_{2}}$.
(2) Go from n to $2 n$.
(3) Go from n to $n-1$.

The AM-GM inequality

(1) Check that $\mathrm{AM} \geq \mathrm{GM}$ for $n=2$.
(2) Go from n to $2 n$.

Split the $2 n$ inequality into two halves:

$$
\begin{aligned}
\frac{a_{1}+\cdots+a_{2 n}}{2 n} & =\frac{\frac{a_{1}+\cdots+a_{n}}{n}+\frac{a_{n+1}+\cdots+a_{2 n}}{n}}{2} \\
& \geq \frac{\left(a_{1} \cdots a_{n}\right)^{1 / n}+\left(a_{n+1} \cdots a_{2 n}\right)^{1 / n}}{2} \\
& \geq\left(\left(a_{1} \cdots a_{n}\right)^{1 / n} \cdot\left(a_{n+1} \cdots a_{2 n}\right)^{1 / n}\right)^{1 / 2} \\
& =\left(a_{1} \cdots a_{2 n}\right)^{1 / 2 n}
\end{aligned}
$$

(3) Go from n to $n-1$.

The AM-GM inequality

(1) Check that $\mathrm{AM} \geq \mathrm{GM}$ for $n=2$.
(2) Go from n to $2 n$.
(3) Go from n to $n-1$.

Let $A M=\frac{a_{1}+\cdots+a_{n-1}}{n-1}$, and set $a_{n}=A M$. Then:

$$
\begin{aligned}
\mathrm{AM}=\frac{a_{1}+\cdots+a_{n}}{n} & \geq\left(a_{1} \cdots a_{n-1} \cdot \mathrm{AM}\right)^{1 / n} \\
\mathrm{AM}^{n} & \geq\left(a_{1} \cdots a_{n-1}\right) \cdot \mathrm{AM} \\
\mathrm{AM}^{n-1} & \geq\left(a_{1} \cdots a_{n-1}\right) \\
\mathrm{AM} & \geq\left(a_{1} \cdots a_{n-1}\right)^{1 / n} .
\end{aligned}
$$

Induction exercises

(1) Prove that $1+2+\cdots+n=\frac{n(n+1)}{2}$ by induction on n.
(2) Recall that the Fibonacci numbers are defined by $F_{0}=0$, $F_{1}=1$, and $F_{n}=F_{n-1}+F_{n-2}$ for $n \geq 2$.) Prove that $F_{3 n}$ is even for all n.
(3) Prove that for all natural numbers n and for all real x, $(1+x)^{n} \geq 1+n x$. (This also holds for all real $n \geq 0$ when $x \geq-1$, a fact known as Bernoulli's inequality.)
(4) Prove that for $n \geq 6, n!>n^{3}$.

Proving things with bijections

Theorem

$$
\binom{n}{k}=\binom{n}{n-k}
$$

Proof idea.

$\binom{n}{k}$ counts subsets of $\{1,2, \ldots, n\}$ with k elements. $\binom{n}{n-k}$ counts subsets with $n-k$ elements. We can pair these up, by pairing the subset A, where $|A|=k$, with the subset $\{1,2, \ldots, n\}-A$. Therefore the number of each type of subset is the same.

The general technique is to prove $|X|=|Y|$ for two sets X, Y by finding a bijection $f: X \rightarrow Y$.

What is a bijection?

A bijection must satisfy two constraints:
(1) It hits everything: $\forall y \in Y \exists x \in X: f(x)=y$.

What is a bijection?

A bijection must satisfy two constraints:
(1) It hits everything: $\forall y \in Y \exists x \in X: f(x)=y$.

Let B be a subset of $\{1,2, \ldots, n\}$ of size $n-k$. Then $A=\{1,2, \ldots, n\}-B$ is a subset of size k such that $f(A)=B$.

What is a bijection?

A bijection must satisfy two constraints:
(1) It hits everything: $\forall y \in Y \exists x \in X: f(x)=y$.

Let B be a subset of $\{1,2, \ldots, n\}$ of size $n-k$. Then $A=\{1,2, \ldots, n\}-B$ is a subset of size k such that $f(A)=B$.
(2) It hits nothing twice: $\forall x_{1}, x_{2} \in X: f\left(x_{1}\right)=f\left(x_{2}\right) \Rightarrow x_{1}=x_{2}$.

What is a bijection?

A bijection must satisfy two constraints:
(1) It hits everything: $\forall y \in Y \exists x \in X: f(x)=y$.

Let B be a subset of $\{1,2, \ldots, n\}$ of size $n-k$. Then $A=\{1,2, \ldots, n\}-B$ is a subset of size k such that $f(A)=B$.
(2) It hits nothing twice: $\forall x_{1}, x_{2} \in X: f\left(x_{1}\right)=f\left(x_{2}\right) \Rightarrow x_{1}=x_{2}$.

Let A_{1}, A_{2} be two subsets of size k. If
$\{1, \ldots, n\}-A_{1}=\{1, \ldots, n\}-A_{2}$, then $A_{1}=A_{2}$. (Exercise!)

What is a bijection?

A bijection must satisfy two constraints:
(1) It hits everything: $\forall y \in Y \exists x \in X: f(x)=y$.

Let B be a subset of $\{1,2, \ldots, n\}$ of size $n-k$. Then $A=\{1,2, \ldots, n\}-B$ is a subset of size k such that $f(A)=B$.
(2) It hits nothing twice: $\forall x_{1}, x_{2} \in X: f\left(x_{1}\right)=f\left(x_{2}\right) \Rightarrow x_{1}=x_{2}$.

Let A_{1}, A_{2} be two subsets of size k. If $\{1, \ldots, n\}-A_{1}=\{1, \ldots, n\}-A_{2}$, then $A_{1}=A_{2}$. (Exercise!)

A shortcut is to exhibit an inverse: a function $f^{-1}: Y \rightarrow X$ such that $\forall x \in X: f^{-1}(f(x))=x$. This is also easy here.

Euler's identity on partitions

Theorem (Euler)

The number of ways to write n as a sum of odd numbers is equal to the number of ways to write n as a sum of distinct numbers. E.g.,

$$
\begin{array}{rlrl}
7 & =7 & 7 & =7 \\
& =5+1+1 & & =5+2 \\
& =3+3+1 & & =6+1 \\
& =3+1+1+1+1 & & =4+3 \\
& =1+1+1+1+1+1+1 & & =4+2+1
\end{array}
$$

(Note: these are also known as partitions of n, and the summands are called parts.)

Euler's identity on partitions

Proof

We construct a bijection f from the first kind of partition to the second kind.

Let λ be a partition of n into odd parts. For each odd k, let r_{k} be the number of times k occurs in λ.

Euler's identity on partitions

Proof

We construct a bijection f from the first kind of partition to the second kind.

Let λ be a partition of n into odd parts. For each odd k, let r_{k} be the number of times k occurs in λ.

Write r_{k} as a sum of distinct powers of 2 :

$$
r_{k}=2^{a_{k, 1}}+2^{a_{k, 2}}+\cdots+2^{a_{k, \ell(k)}}
$$

Euler's identity on partitions

Proof

We construct a bijection f from the first kind of partition to the second kind.

Let λ be a partition of n into odd parts. For each odd k, let r_{k} be the number of times k occurs in λ.

Write r_{k} as a sum of distinct powers of 2 :

$$
r_{k}=2^{a_{k, 1}}+2^{a_{k, 2}}+\cdots+2^{a_{k, \ell(k)}}
$$

Then we obtain $f(\lambda)$ by making the following replacement, for each k :

$$
\underbrace{k+k+\cdots+k}_{r_{k} \text { times }} \rightsquigarrow k \cdot 2^{a_{k, 1}}+k \cdot 2^{a_{k, 2}}+\cdots+k \cdot 2^{a_{k, \ell(k)}} .
$$

Euler's identity on partitions

Proof

We construct a bijection f from the first kind of partition to the second kind.

Let λ be a partition of n into odd parts. For each odd k, let r_{k} be the number of times k occurs in λ.

Write r_{k} as a sum of distinct powers of 2 :

$$
r_{k}=2^{a_{k, 1}}+2^{a_{k, 2}}+\cdots+2^{a_{k, \ell(k)}}
$$

Then we obtain $f(\lambda)$ by making the following replacement, for each k :

$$
\underbrace{k+k+\cdots+k}_{r_{k} \text { times }} \rightsquigarrow k \cdot 2^{a_{k, 1}}+k \cdot 2^{a_{k, 2}}+\cdots+k \cdot 2^{a_{k, \ell(k)}} .
$$

Exercise: describe the inverse of f.

Exercises with bijections

(1) Prove that $\binom{n}{k}=\binom{n-1}{k}+\binom{n-1}{k-1}$ using a bijection.
(2) The Catalan numbers count the number of ways to parenthesize $a_{1}+a_{2}+\cdots+a_{n}$: e.g., for $n=3$, we can write $\left(\left(a_{1}+a_{2}\right)+a_{3}\right)$ or $\left(a_{1}+\left(a_{2}+a_{3}\right)\right)$; for $n=4$, one of the possibilities is $\left(\left(a_{1}+\left(a_{2}+a_{3}\right)\right)+a_{4}\right)$.

Prove that the Catalan numbers also count the number of paths from $(1,1)$ to (n, n) which go up or to the right at each step and also stay within region where $x \geq y$. For $n=3$, we have the paths

and

