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Warm-up Quantifiers and the harmonic series Sets Second warmup Induction Bijections

Warm-up

Using the quantifier notation on the reference sheet, and making
any further definitions you need to, write the following:

“You can fool all the people some of the time, and some of the
people all the time, but you cannot fool all the people all the time.”

Let P be the set of all people, T the set of all times, and F (p, t)
the statement that person p can be fooled at time t. Then

(∀p ∈ P ∃t ∈ T : F (p, t))

∧ (∃p ∈ P ∀t ∈ T : F (p, t))

∧ ¬(∀p ∈ P ∀t ∈ T : F (p, t)).
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Proving things: a case study

Problem

Prove that the harmonic series

1 +
1

2
+

1

3
+

1

4
+ · · ·

diverges.

Proof idea.

Round down 1
3 + 1

4 to 1
4 + 1

4 , 1
5 + 1

6 + 1
7 + 1

8 to 1
8 + 1

8 + 1
8 + 1

8 , and
so on.
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Key points to hit

It’s good to be specific about the rounding: 1
n rounds down to

1
2k

chosen so that 2k−1 < n ≤ 2k .

This makes it easy to show that there are 2k−1 terms that
round down to 1

2k
, contributing a total of 1

2 .

One possible punchline: 1 + 1
2 + 1

2 + · · · diverges, and the
harmonic series is at least as large.

Better (fewer infinities): The first 2k terms of the harmonic
series total at least 1 + k

2 , which can be arbitrarily large.
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What is divergence, anyway?

Say we have the infinite series a1 + a2 + a3 + · · · . We call
Sn =

∑n
k=1 ak the n-th partial sum.

When all the ak are positive, the infinite series diverges if and only
if the sequence of partial sums tends to infinity. This happens iff:

The partial sums become arbitrarily large if we take
sufficiently many terms.

Which is to say, for all M there is an index n such that Sn
exceeds M.

∀M ∃n : Sn > M.

When a series contains negative numbers, things are more
complicated: e.g.,

1− 1 + 1− 1 + 1− 1 + · · · .
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Proving a dependence

We want to prove that ∀M ∃n : Sn > M, where Sn =
∑n

k=1
1
k .

How?

Let M be any real number. Take n = 22M . Then

Sn = 1 +
1

2
+

1

3
+ · · ·+ 1

22M

= 1 +

(
1

2

)
+

(
1

3
+

1

4

)
+ · · ·+

(
1

22M−1 + 1
+ · · ·+ 1

22M

)
> 1 +

1

2
+

1

2
+ · · ·+ 1

2︸ ︷︷ ︸
2M times

= M + 1 > M.

Therefore the harmonic series diverges.

[Therefore for any M, there is some n such that Sn > M, so Sn
tends to infinity, and therefore the harmonic series diverges.]
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Exercises

1 “There are arbitrarily large numbers of the form 111 . . . 11
which are divisible by 7.”

Rephrase this statement as “For all . . . , there exists . . . such
that . . . .”

Then prove it. (Hint: 111111 = 15873 · 7.)

2 The infinite series 1 + 1
22 + 1

32 + 1
42 + · · · converges to π2

6 .
This is obviously kind of tricky to prove, so we won’t.

Prove that 1 + 1
22 + 1

32 + 1
42 + · · · ≤ 2. (Hint: a similar

approach works.)

What would you need to show to prove that the sequence of
partial sums DOES NOT tend to infinity, using the formal
definition?

3 A number x is even if x = 2y for some y , and odd if
x = 2y + 1 for some y . Prove that all numbers are either even
or odd.
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Various kinds of mathematical statements

∃x : “Odd numbers exist”.

To prove this, you give an example of an odd number.

∀x : “All numbers are equal to themselves”.

To prove this, you say “Let n be any number”, and then prove
that n = n.

∀x ∃y : See previous slides.

∃x ∀y : “There is a number x such that x + y = y for all y .”

To prove this, you pick an x , and then do the ∀ proof.

∀x ∃y ∀z “For all x , there is a y such that (x + y) + z = z
for all z .”

. . .
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Proving things about sets

This is an exercise in unpacking notation. (You should have a
reference sheet for all the notation I will use.) For example:

Theorem

A ∩ B ⊆ A.

Proof.

First of all, A ∩ B ⊆ A means “for all x ∈ A ∩ B, x ∈ A.“

Suppose x ∈ A ∩ B. Then x ∈ A and x ∈ B.
Therefore x ∈ A.

Therefore ∀x ∈ A ∩ B : x ∈ A, which means A ∩ B ⊆ A.
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Exercises in sets

Prove the following:

1 A ⊆ A ∪ B.

2 ∅ ⊆ A.

3 A ∪ ∅ = A.

4 A ⊆ (A− B) ∪ B.

5 (A− B) ∩ (B − A) = ∅.

6 Let A∆B denote (A− B) ∪ (B − A). Prove that

(A∆B) ∆ (B ∆C ) ∆ (A∆C ) = ∅.
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Second warmup

1 Prove that if
√

2 is an integer, then it is odd.

Since 1 < 2 < 4, we have
√

1 <
√

2 <
√

4, so 1 <
√

2 < 2,
and therefore

√
2 is not an integer. Therefore it is true that if√

2 is an integer, it is odd.

2 Prove that if
√

2 is rational, then it is an integer.

It suffices to prove that
√

2 is irrational.

Suppose
√

2 = p
q , where p and q are integers. Then

p2 = 2q2. But the highest power of 2 dividing p2 is even,
while the highest power of 2 dividing 2q2 is odd. This is a
contradiction, so

√
2 cannot be rational.
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A simple induction proof

Theorem

For n ≥ 4, n! > 2n.

Proof.

Let n = 4; then n! = 24 > 16 = 2n.

If n > 4 and (n − 1)! > 2n−1, then

n! = n · (n − 1)! > n · 2n−1 > 2 · 2n−1 = 2n.

By induction, we have n! > 2n for all n ≥ 4.
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The AM-GM inequality

Theorem (AM-GM)

For real numbers a1, . . . , an ≥ 0, if AM = a1+···+an
n and

GM = (a1 · a2 · · · an)1/n, then AM ≥ GM.

Proof outline.

We prove three things:
1 That AM ≥ GM for n = 2.
2 That the n case implies the 2n case.
3 That the n case implies the n − 1 case.

These implications give us a path to any value of n from the base
case of 2 (though this claim needs proof). For example, to prove
n = 17, we go

2⇒ 4⇒ 3⇒ 6⇒ 5⇒ 10⇒ 9⇒ 18⇒ 17.

By induction, AM ≥ GM for all n.
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The AM-GM inequality

1 Check that AM ≥ GM for n = 2.

Start with (
√
a1 −

√
a2)2 ≥ 0. This means

a1 + a2 − 2
√
a1a2 ≥ 0, or a1+a2

2 ≥ √a1a2.

2 Go from n to 2n.

3 Go from n to n − 1.
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The AM-GM inequality

1 Check that AM ≥ GM for n = 2.

2 Go from n to 2n.

Split the 2n inequality into two halves:

a1 + · · ·+ a2n

2n
=

a1+···+an
n + an+1+···+a2n

n

2

≥ (a1 · · · an)1/n + (an+1 · · · a2n)1/n

2

≥
(

(a1 · · · an)1/n · (an+1 · · · a2n)1/n
)1/2

= (a1 · · · a2n)1/2n .

3 Go from n to n − 1.
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The AM-GM inequality

1 Check that AM ≥ GM for n = 2.

2 Go from n to 2n.

3 Go from n to n − 1.

Let AM = a1+···+an−1

n−1 , and set an = AM. Then:

AM =
a1 + · · ·+ an

n
≥ (a1 · · · an−1 · AM)1/n

AMn ≥ (a1 · · · an−1) · AM

AMn−1 ≥ (a1 · · · an−1)

AM ≥ (a1 · · · an−1)1/n .
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Induction exercises

1 Prove that 1 + 2 + · · ·+ n = n(n+1)
2 by induction on n.

2 (Recall that the Fibonacci numbers are defined by F0 = 0,
F1 = 1, and Fn = Fn−1 + Fn−2 for n ≥ 2.) Prove that F3n is
even for all n.

3 Prove that for all natural numbers n and for all real x ,
(1 + x)n ≥ 1 + nx . (This also holds for all real n ≥ 0 when
x ≥ −1, a fact known as Bernoulli’s inequality.)

4 Prove that for n ≥ 6, n! > n3.
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Proving things with bijections

Theorem (
n

k

)
=

(
n

n − k

)

Proof idea.(n
k

)
counts subsets of {1, 2, . . . , n} with k elements.

( n
n−k

)
counts

subsets with n − k elements. We can pair these up, by pairing the
subset A, where |A| = k, with the subset {1, 2, . . . , n} − A.
Therefore the number of each type of subset is the same.

The general technique is to prove |X | = |Y | for two sets X , Y by
finding a bijection f : X → Y .
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What is a bijection?

A bijection must satisfy two constraints:

1 It hits everything: ∀y ∈ Y ∃x ∈ X : f (x) = y .

Let B be a subset of {1, 2, . . . , n} of size n − k . Then
A = {1, 2, . . . , n} − B is a subset of size k such that
f (A) = B.

2 It hits nothing twice: ∀x1, x2 ∈ X : f (x1) = f (x2)⇒ x1 = x2.

Let A1,A2 be two subsets of size k . If
{1, . . . , n} − A1 = {1, . . . , n} − A2, then A1 = A2. (Exercise!)

A shortcut is to exhibit an inverse: a function f −1 : Y → X such
that ∀x ∈ X : f −1(f (x)) = x . This is also easy here.
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Euler’s identity on partitions

Theorem (Euler)

The number of ways to write n as a sum of odd numbers is equal to
the number of ways to write n as a sum of distinct numbers. E.g.,

7 = 7 7 = 7

= 5 + 1 + 1 = 5 + 2

= 3 + 3 + 1 = 6 + 1

= 3 + 1 + 1 + 1 + 1 = 4 + 3

= 1 + 1 + 1 + 1 + 1 + 1 + 1 = 4 + 2 + 1

(Note: these are also known as partitions of n, and the summands
are called parts.)
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Euler’s identity on partitions
Proof

We construct a bijection f from the first kind of partition to the
second kind.

Let λ be a partition of n into odd parts. For each odd k, let rk be
the number of times k occurs in λ.

Write rk as a sum of distinct powers of 2:

rk = 2ak,1 + 2ak,2 + · · ·+ 2ak,`(k) .

Then we obtain f (λ) by making the following replacement, for
each k:

k + k + · · ·+ k︸ ︷︷ ︸
rk times

 k · 2ak,1 + k · 2ak,2 + · · ·+ k · 2ak,`(k) .

Exercise: describe the inverse of f .
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Exercises with bijections

1 Prove that
(n
k

)
=
(n−1

k

)
+
(n−1
k−1

)
using a bijection.

2 The Catalan numbers count the number of ways to
parenthesize a1 + a2 + · · ·+ an: e.g., for n = 3, we can write
((a1 + a2) + a3) or (a1 + (a2 + a3)); for n = 4, one of the
possibilities is ((a1 + (a2 + a3)) + a4).

Prove that the Catalan numbers also count the number of
paths from (1, 1) to (n, n) which go up or to the right at each
step and also stay within region where x ≥ y . For n = 3, we
have the paths

and
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