Equivalence Relations

David Altizio, Gunmay Handa

April 18, 2018

1 Introduction

Before we start the problems, we need a few definitions.
Definition 1. Let X be any set. A relation R on X is a subset of $X \times X$, i.e. it is a collection of ordered pairs of elements in X. We sometimes write $x R y$ to denote that $(x, y) \in R$.

Example 1. Let $X=\{1,2,3\}$. Then $\{(1,1),(1,2),(1,3),(2,2),(2,3),(3,3)\}$ is a relation on X, commonly known as ' \leq '.

Definition 2. Let R be a relation on a set X. We say that R is

- reflexive if $(x, x) \in R$ for all $x \in X$;
- symmetric if $(x, y) \in R$ implies $(y, x) \in R$ for all $x, y \in X$;
- transitive if $(x, y) \in R$ and $(y, z) \in R$ implies $(x, z) \in R$ for all $x, y, z \in X$.

Example 2. \leq, as defined above, is reflexive and transitive but not symmetric.
Definition 3. We say that a relation \sim on a set X is an equivalence relation if it is reflexive, symmetric, and transitive. We write $x \sim y$ to denote that x and y are related under $\sim .^{1}$

Definition 4. Let \sim be an equivalence relation on a set X. Suppose $Y \subset X$ is such that

- for all $a, b \in Y, a \sim b$, and
- for all $a \in Y$ and $b \notin Y, a \nsim b$.

Then Y is said to be an equivalence class of X by \sim.

2 Problems

1. Determine whether the following relations are equivalence relations on the given set S. If the relation is in fact an equivalence relation, describe its equivalence classes.
(a) $S=\mathbb{N} \backslash\{0,1\} ;(x, y) \in R$ if and only if $\operatorname{gcd}(x, y)>1$.
(b) $S=\mathbb{R} ;(a, b) \in R$ if and only if

$$
a^{2}+a=b^{2}+b
$$

(c) $S=\mathbb{R} ;(x, y) \in R$ if and only if there exists $n \in \mathbb{Z}$ such that $x=2^{n} y$.
(d) (MIT 6.042) $S=P$, where P is the set of all people in the world today; $(x, y) \in R$ if and only if x is at least as tall as y.

[^0](e) (BYU) $S=\mathbb{Z} ;(x, y) \in R$ if and only if $2 x+5 y \equiv 0(\bmod 7)$.
2. Suppose a relation R on a set S is antisymmetric if the following holds: whenever x and y in S satisfy $x R y$ and $y R x$, then $x=y$. (For reference, an example of such a relation is the \leq relation on \mathbb{R}.) If an equivalence relation \sim on a set S is also antisymmetric, then what can we say about \sim ?
3. Let \sim_{1} and \sim_{2} be two equivalence relations on the same set S.
(a) Is the relation \sim on S defined by
$$
x \sim y \text { if } x \sim_{1} y \text { and } x \sim_{2} y
$$
an equivalence relation?
(b) Is the relation \sim on S defined by
$$
x \sim y \text { if } x \sim_{1} y \text { or } x \sim_{2} y
$$
an equivalence relation?
4. It may not be so obvious that equivalence classes of an equivalence relation are nice to work with. With this in mind, let Y_{1}, \ldots, Y_{ℓ} be subsets of some set X. Prove that the following are equivalent.

- There exists an equivalence relation \sim on X with Y_{1}, \ldots, Y_{ℓ} being its equivalence classes;
- Y_{1}, \ldots, Y_{ℓ} forms a partition of X, i.e. $Y_{i} \cap Y_{j}=\varnothing$ for all $1 \leq i<j \leq \ell$ and

$$
X=Y_{1} \cup Y_{2} \cup \cdots \cup Y_{\ell}
$$

5. (Tripos 2011) Write down an equivalence relation on the positive integers that has exactly four equivalence classes, of which two are infinite and two are finite.
6. For all $n \geq 0$, let B_{n} denote the number of equivalence relations on the set $\{1,2, \ldots, n\}$, where here we define $B_{0}=1$. Show that B_{n} is finite by giving an explicit upper bound in terms of n.
7. Fix $n \geq 3$. Let C_{n} denote the number of equivalence relations \sim on the set $\{1,2, \ldots, n\}$ such that $1 \sim 2$. Let D_{n} denote the number of equivalence relations \sim on the set $\{1,2, \ldots, n\}$ such that $1 \not \nsim 2$. Determine, with proof, which of C_{n}, D_{n} is larger.
8. For all $n \geq 0$, denote by B_{n} the number from Problem 6 .
(a) Show that

$$
B_{n+1}=\sum_{k=0}^{n} B_{k}\binom{n}{k}
$$

for all $n \geq 0$.
(b) Show that

$$
B_{n}=\frac{1}{e} \sum_{k=0}^{\infty} \frac{k^{n}}{k!}
$$

for all $n \geq 0$. You may take the $n=0$ case for granted.

3 Selected solutions (sketched)

5. We can specify just the equivalence classes. For example, $\{1\},\{2\}$, $\{$ odds greater than 1$\}$, $\{$ evens greater than 2$\}$ does the job.
6. A relation is defined as the a subset of $X \times X$ where $X=\{1,2, \ldots, n\}$. This set has n^{2} elements, so it has $2^{n^{2}}$ subsets, which gives a bound on the number of equivalence relations.
7. D_{n} is larger. Take any equivalence \sim relation in C_{n}. Define a new equivalence relation \sim^{\prime} by simply removing the element 1 from its equivalence class in \sim, and placing it in its own equivalence class. Now $1 \not \chi^{\prime} 2$, and we clearly get a distinct \sim^{\prime} for distinct \sim. Thus $C_{n} \leq D_{n}$ is at least as large. Also note that D_{n} includes any equivalence relation in which 1 is not in an equivalence class by itself but is also not in the same class is 2 , but that no \sim such that $1 \sim 2$ maps to this equivalence relation. Since $n \geq 3$ there is at least one such class, so $C_{n}<D_{n}$.
8. (a) For any equivalence relation \sim on $\{1, \ldots, n, n+1\}$, let k be the number of elements $i \in$ $\{1,2, \ldots, n\}$ such that $i \nsim n+1 . k$ can range from 0 to n, for each fixed k there are $\binom{n}{k}$ ways to choose the k elements that are not equivalent to $n+1$, and B_{k} ways to define the equivalence relation on these k elements.
(b) Use the well-known fact that $e=\sum_{n=0}^{\infty} \frac{1}{n!}$ for the base case, and then apply induction using part (a).

[^0]: ${ }^{1}$ The change in notation is admittedly weird, but it is conventional, so we will stick to it.

