Equivalence Relations

David Altizio, Gunmay Handa

April 18, 2018

1 Introduction

Before we start the problems, we need a few definitions.

Definition 1. Let X be any set. A relation R on X is a subset of $X \times X$, i.e. it is a collection of ordered pairs of elements in X. We sometimes write xRy to denote that $(x, y) \in R$.

Example 1. Let $X = \{1, 2, 3\}$. Then $\{(1, 1), (1, 2), (1, 3), (2, 2), (2, 3), (3, 3)\}$ is a relation on X, commonly known as ' \leq '.

Definition 2. Let R be a relation on a set X. We say that R is

- reflexive if $(x, x) \in R$ for all $x \in X$;
- symmetric if $(x, y) \in R$ implies $(y, x) \in R$ for all $x, y \in X$;
- transitive if $(x, y) \in R$ and $(y, z) \in R$ implies $(x, z) \in R$ for all $x, y, z \in X$.

Example 2. \leq , as defined above, is reflexive and transitive but not symmetric.

Definition 3. We say that a relation \sim on a set X is an *equivalence* relation if it is reflexive, symmetric, and transitive. We write $x \sim y$ to denote that x and y are related under \sim .¹

Definition 4. Let ~ be an equivalence relation on a set X. Suppose $Y \subset X$ is such that

- for all $a, b \in Y$, $a \sim b$, and
- for all $a \in Y$ and $b \notin Y$, $a \not\sim b$.

(b) $S = \mathbb{R}$; $(a, b) \in R$ if and only if

Then Y is said to be an *equivalence class* of X by \sim .

2 Problems

- 1. Determine whether the following relations are equivalence relations on the given set S. If the relation is in fact an equivalence relation, describe its equivalence classes.
 - (a) $S = \mathbb{N} \setminus \{0, 1\}; (x, y) \in R$ if and only if gcd(x, y) > 1.

 $a^2 + a = b^2 + b.$

(c) $S = \mathbb{R}$; $(x, y) \in R$ if and only if there exists $n \in \mathbb{Z}$ such that $x = 2^n y$.

(d) (MIT 6.042) S = P, where P is the set of all people in the world today; $(x, y) \in R$ if and only if x is at least as tall as y.

¹The change in notation is admittedly weird, but it is conventional, so we will stick to it.

(e) (BYU) $S = \mathbb{Z}$; $(x, y) \in R$ if and only if $2x + 5y \equiv 0 \pmod{7}$.

- 2. Suppose a relation R on a set S is *antisymmetric* if the following holds: whenever x and y in S satisfy xRy and yRx, then x = y. (For reference, an example of such a relation is the \leq relation on \mathbb{R} .) If an equivalence relation \sim on a set S is also antisymmetric, then what can we say about \sim ?
- 3. Let \sim_1 and \sim_2 be two equivalence relations on the same set S.
 - (a) Is the relation \sim on S defined by

$$x \sim y$$
 if $x \sim_1 y$ and $x \sim_2 y$

an equivalence relation?

(b) Is the relation \sim on S defined by

$$x \sim y$$
 if $x \sim_1 y$ or $x \sim_2 y$

an equivalence relation?

- 4. It may not be so obvious that equivalence classes of an equivalence relation are nice to work with. With this in mind, let Y_1, \ldots, Y_ℓ be subsets of some set X. Prove that the following are equivalent.
 - There exists an equivalence relation ~ on X with Y_1, \ldots, Y_ℓ being its equivalence classes;
 - Y_1, \ldots, Y_ℓ forms a partition of X, i.e. $Y_i \cap Y_j = \emptyset$ for all $1 \le i < j \le \ell$ and

$$X = Y_1 \cup Y_2 \cup \cdots \cup Y_\ell.$$

- 5. (Tripos 2011) Write down an equivalence relation on the positive integers that has exactly four equivalence classes, of which two are infinite and two are finite.
- 6. For all $n \ge 0$, let B_n denote the number of equivalence relations on the set $\{1, 2, \ldots, n\}$, where here we define $B_0 = 1$. Show that B_n is finite by giving an explicit upper bound in terms of n.
- 7. Fix $n \geq 3$. Let C_n denote the number of equivalence relations \sim on the set $\{1, 2, \ldots, n\}$ such that $1 \sim 2$. Let D_n denote the number of equivalence relations \sim on the set $\{1, 2, \ldots, n\}$ such that $1 \not\sim 2$. Determine, with proof, which of C_n , D_n is larger.
- 8. For all $n \ge 0$, denote by B_n the number from Problem 6.
 - (a) Show that

$$B_{n+1} = \sum_{k=0}^{n} B_k \binom{n}{k}$$

for all $n \ge 0$.

(b) Show that

$$B_n = \frac{1}{e} \sum_{k=0}^{\infty} \frac{k^n}{k!}$$

for all $n \ge 0$. You may take the n = 0 case for granted.

3 Selected solutions (sketched)

- 5. We can specify just the equivalence classes. For example, {1}, {2}, {odds greater than 1}, {evens greater than 2} does the job.
- 6. A relation is defined as the a subset of $X \times X$ where $X = \{1, 2, ..., n\}$. This set has n^2 elements, so it has 2^{n^2} subsets, which gives a bound on the number of equivalence relations.
- 7. D_n is larger. Take any equivalence ~ relation in C_n . Define a new equivalence relation ~' by simply removing the element 1 from its equivalence class in ~, and placing it in its own equivalence class. Now 1 $\not\sim'$ 2, and we clearly get a distinct ~' for distinct ~. Thus $C_n \leq D_n$ is at least as large. Also note that D_n includes any equivalence relation in which 1 is not in an equivalence class by itself but is also not in the same class is 2, but that no ~ such that 1 ~ 2 maps to this equivalence relation. Since $n \geq 3$ there is at least one such class, so $C_n < D_n$.
- 8. (a) For any equivalence relation \sim on $\{1, \ldots, n, n+1\}$, let k be the number of elements $i \in \{1, 2, \ldots, n\}$ such that $i \not\sim n+1$. k can range from 0 to n, for each fixed k there are $\binom{n}{k}$ ways to choose the k elements that are not equivalent to n+1, and B_k ways to define the equivalence relation on these k elements.
 - (b) Use the well-known fact that $e = \sum_{n=0}^{\infty} \frac{1}{n!}$ for the base case, and then apply induction using part (a).