Set Theory 2

Varsity Practice 2/14/21
 Ariel Uy ${ }^{1}$

1 Background

Sets

- Intersection: $X \cap Y=\{a \mid a \in X \wedge a \in Y\}$
- Union: $X \cup Y=\{a \mid a \in X \vee a \in Y\}$
- Set difference: $X \backslash Y=\{a \in X \mid a \notin Y\}$
- Symmetric difference: $X \triangle Y=(X \backslash Y) \cup(Y \backslash X)$
- Power set: $\mathscr{P}(X)$ is the set of all subsets of X
- Cartesian product: $X \times Y=\{(a, b) \mid a \in X \wedge b \in Y\}$
- Cardinality: $|X|$ is the size of X
- Subset: $X \subseteq Y$ if $\forall a \in X, a \in Y$
- Set Equality: $X=Y$ if $X \subseteq Y$ and $Y \subseteq X$
- X and Y are disjoint if $X \cap Y=\varnothing$

Functions

- A function $f: X \rightarrow Y$ is injective if $\forall a, b \in X, f(a)=f(b) \Rightarrow a=b$.
- A function $f: X \rightarrow Y$ is surjective if $\forall y \in Y, \exists x \in X, f(x)=y$.
- A function is bijective if it is injective and surjective.

[^0]
2 Warmup

1. Construct a bijection between the following pairs of sets. Prove that your function is a bijection.
(a) \mathbb{Z} and \mathbb{N}
(b) $\mathbb{N}^{+} \times\{0,1\}$ and $\mathbb{Z} \backslash\{0\}$
(c) Binary strings of length n and $\mathscr{P}(\{1,2, \ldots, n\})$
(d) $A \times(B \times C)$ and $(B \times A) \times C$ for any sets A, B, C
(e) $(0,1)$ and $[0,1)$
(f) $(0,1)$ and \mathbb{R}

3 Problems 1

1. Prove that $|\mathbb{N}|=|\mathbb{N} \times \mathbb{N}|$.
2. Suppose we have a bijection $f: A \rightarrow B$. Construct a bijection $g: \mathscr{P}(A) \rightarrow \mathscr{P}(B)$.
3. Do the following sets have the same or different cardinalities?

- $\mathscr{P}(\mathbb{N})$
- All subsets of \mathbb{N} which have a finite number of elements

4 Problems 2

1. Prove for any ordinal $\alpha, \alpha<(\alpha+1)+1$.
2. Prove for all ordinals α, β, if $\beta<\alpha+1$, then $\beta<\alpha$ or $\beta=\alpha$ (i.e. $\beta \leq \alpha$).
3. Construct a bijection from ω to $\omega+\omega+\omega$.

5 Further Problems

1. Construct a bijection between the following pairs of sets. Prove that your function is a bijection.
(a) $(0,1]$ and $(0,1]^{2}$
(b) \mathbb{R} and \mathbb{R}^{2}
(c) Infinite binary strings and the Cantor set
2. Prove that $|\mathbb{R}|=|\mathscr{P}(\mathbb{N})|$.
3. Prove that two sets having a bijection between them is an equivalence relation (reflexive, symmetric, transitive).

[^0]: ${ }^{1}$ Many problems from An Infinite Descent into Pure Mathematics by Clive Newstead

