Set Theory 2

Varsity Practice 2/14/21Ariel Uy¹

1 Background

 Sets

- Intersection: $X \cap Y = \{a \mid a \in X \land a \in Y\}$
- Union: $X \cup Y = \{a \mid a \in X \lor a \in Y\}$
- Set difference: $X \setminus Y = \{a \in X \mid a \notin Y\}$
- Symmetric difference: $X \triangle Y = (X \setminus Y) \cup (Y \setminus X)$
- Power set: $\mathscr{P}(X)$ is the set of all subsets of X
- Cartesian product: $X \times Y = \{(a, b) | a \in X \land b \in Y\}$
- Cardinality: |X| is the size of X
- Subset: $X \subseteq Y$ if $\forall a \in X, a \in Y$
- Set Equality: X = Y if $X \subseteq Y$ and $Y \subseteq X$
- X and Y are **disjoint** if $X \cap Y = \emptyset$

Functions

- A function $f: X \to Y$ is **injective** if $\forall a, b \in X, f(a) = f(b) \Rightarrow a = b$.
- A function $f: X \to Y$ is surjective if $\forall y \in Y, \exists x \in X, f(x) = y$.
- A function is **bijective** if it is injective and surjective.

¹Many problems from An Infinite Descent into Pure Mathematics by Clive Newstead

2 Warmup

- 1. Construct a bijection between the following pairs of sets. Prove that your function is a bijection.
 - (a) \mathbb{Z} and \mathbb{N}
 - (b) $\mathbb{N}^+ \times \{0,1\}$ and $\mathbb{Z} \setminus \{0\}$
 - (c) Binary strings of length n and $\mathscr{P}(\{1, 2, ..., n\})$
 - (d) $A \times (B \times C)$ and $(B \times A) \times C$ for any sets A, B, C
 - (e) (0,1) and [0,1)
 - (f) (0,1) and \mathbb{R}

3 Problems 1

- 1. Prove that $|\mathbb{N}| = |\mathbb{N} \times \mathbb{N}|$.
- 2. Suppose we have a bijection $f: A \to B$. Construct a bijection $g: \mathscr{P}(A) \to \mathscr{P}(B)$.
- 3. Do the following sets have the same or different cardinalities?
 - $\mathscr{P}(\mathbb{N})$
 - All subsets of $\mathbb N$ which have a finite number of elements

4 Problems 2

- 1. Prove for any ordinal α , $\alpha < (\alpha + 1) + 1$.
- 2. Prove for all ordinals α, β , if $\beta < \alpha + 1$, then $\beta < \alpha$ or $\beta = \alpha$ (i.e. $\beta \le \alpha$).
- 3. Construct a bijection from ω to $\omega + \omega + \omega$.

5 Further Problems

- 1. Construct a bijection between the following pairs of sets. Prove that your function is a bijection.
 - (a) (0,1] and $(0,1]^2$
 - (b) \mathbb{R} and \mathbb{R}^2
 - (c) Infinite binary strings and the Cantor set
- 2. Prove that $|\mathbb{R}| = |\mathscr{P}(\mathbb{N})|$.
- 3. Prove that two sets having a bijection between them is an equivalence relation (reflexive, symmetric, transitive).