Number Theory 1

Varsity Practice 2/21/21 Matthew Shi

1 True Statements on Modularity

- Bezout's Theorem: ax + by = c for fixed a, b, c has solution (x, y) iff gcd(a, b) divides c. This stems from the Euclidean algorithm, which is based on the fact that gcd(bq + r, b) = gcd(r, b) for any q.
- Multiplicative Inverses: If gcd(a, n) = 1, then there exists a^{-1} such that $a * a^{-1} \equiv 1 \mod n$. Inverses may be obtained via Euclidean Algorithm.
- Conversions: Given $x \equiv a \mod n$, we can rewrite this as x = a + kn, for some integer k. Similarly, given x = a + kn for any integer k, we can rewrite this as $x \equiv a \mod n$.
- Chinese Remainder Theorem: Suppose we are given two equations $x = a \mod m, x = b \mod n$. We can combine the two into a singular equation $x = c \mod lcm(m, n)$, by substituting one equation into the other.
- Fermat's Little Theorem: $a^p \equiv a \mod p$, for p prime.
- Wilson's Theorem: $(p-1)! = -1 \mod p$ for p prime.
- Euler's Theorem: Let $\phi(n)$ represent the number of integers x such that $x \leq n$ and gcd(x, n) = 1. Then $a^{\phi(n)} \equiv 1 \mod n$, for a, n relatively prime.

2 Problems

Problems taken from Stanford Math Tournament and Berkeley Math Tournament

- 1. What is $2019^{2019} \mod 11$?
- 2. Compute the remainder when 98! is divided by 101.
- 3. The number N_b is the number that, when written in base b, is represented as 123. What is the smallest b such that N_b is a perfect cube?
- 4. Let $1 = a_1 < a_2 < \ldots < a_k = n$ denote the factors of n in increasing order. Suppose $n = a_3^3 a_2^3$. Solve for n.
- 5. Positive integer n has the property that n 64 is a perfect cube. Further suppose that n is divisible by 37. Find the smallest positive value for n.
- 6. Suppose both p and $p^4 + 34$ are prime numbers. Solve for p.
- 7. Compute $\sum_{i=1}^{9} 99gcd(x, 10x+9)$.

- 8. Find the two smallest numbers n such that 3^n is divisible by n and $3^n 1$ is divisible by n 1.
- 9. Compute the last two digits of $2^{3^{4\cdots 2014}}$.
- 10. Find the largest integer that divides $p^2 1$ for all primes p > 3.
- 11. Compute the remainder when the product of all positive integers less than and relatively prime to 2019 is divided by 2019.
- 12. Let f(x) be defined as $\sum_{i=0}^{2} {\binom{x-1}{i}}((x-1-i)!+i!) \mod x$. Let S be the set of all primes between 3 and 30 inclusive. Compute $\sum_{x \in S} f(x)$.
- 13. Let $\psi(n)$ be the number of integers $0 \le r < n$ such that there exists x such that $x^2 + x \equiv r \mod n$. Find the sum of all distinct prime factors of

$$\sum_{i=0}^{4} \sum_{j=0}^{4} \psi(3^{i}5^{j})$$