Number Theory 1

Varsity Practice 2/21/21
 Matthew Shi

1 True Statements on Modularity

- Bezout's Theorem: $a x+b y=c$ for fixed a, b, c has solution (x, y) iff $\operatorname{gcd}(a, b)$ divides c. This stems from the Euclidean algorithm, which is based on the fact that $\operatorname{gcd}(b q+r, b)=\operatorname{gcd}(r, b)$ for any q.
- Multiplicative Inverses: If $\operatorname{gcd}(a, n)=1$, then there exists a^{-1} such that $a * a^{-1} \equiv 1 \bmod n$. Inverses may be obtained via Euclidean Algorithm.
- Conversions: Given $x \equiv a \bmod n$, we can rewrite this as $x=a+k n$, for some integer k. Similarly, given $x=a+k n$ for any integer k, we can rewrite this as $x \equiv a \bmod n$.
- Chinese Remainder Theorem: Suppose we are given two equations $x=a \bmod m, x=b \bmod$ n. We can combine the two into a singular equation $x=c \bmod l c m(m, n)$, by substituting one equation into the other.
- Fermat's Little Theorem: $a^{p} \equiv a \bmod p$, for p prime.
- Wilson's Theorem: $(p-1)$! $=-1 \bmod p$ for p prime.
- Euler's Theorem: Let $\phi(n)$ represent the number of integers x such that $x \leq n$ and $\operatorname{gcd}(x, n)=$ 1. Then $a^{\phi(n)} \equiv 1 \bmod n$, for a, n relatively prime.

2 Problems

Problems taken from Stanford Math Tournament and Berkeley Math Tournament

1. What is $2019^{2019} \bmod 11$?
2. Compute the remainder when 98 ! is divided by 101 .
3. The number N_{b} is the number that, when written in base b, is represented as 123 . What is the smallest b such that N_{b} is a perfect cube?
4. Let $1=a_{1}<a_{2}<\ldots<a_{k}=n$ denote the factors of n in increasing order. Suppose $n=a_{3}^{3}-a_{2}^{3}$. Solve for n.
5. Positive integer n has the property that $n-64$ is a perfect cube. Further suppose that n is divisible by 37 . Find the smallest positive value for n.
6. Suppose both p and $p^{4}+34$ are prime numbers. Solve for p.
7. Compute $\sum_{i=1}^{9} 99 g c d(x, 10 x+9)$.
8. Find the two smallest numbers n such that 3^{n} is divisible by n and $3^{n}-1$ is divisible by $n-1$.
9. Compute the last two digits of $2^{3^{4 \cdots 2014}}$.
10. Find the largest integer that divides $p^{2}-1$ for all primes $p>3$.
11. Compute the remainder when the product of all positive integers less than and relatively prime to 2019 is divided by 2019.
12. Let $f(x)$ be defined as $\sum_{i=0}^{2}\binom{x-1}{i}((x-1-i)!+i!) \bmod x$. Let S be the set of all primes between 3 and 30 inclusive. Compute $\sum_{x \in S} f(x)$.
13. Let $\psi(n)$ be the number of integers $0 \leq r<n$ such that there exists x such that $x^{2}+x \equiv$ $r \bmod n$. Find the sum of all distinct prime factors of

$$
\sum_{i=0}^{4} \sum_{j=0}^{4} \psi\left(3^{i} 5^{j}\right)
$$

