Western PA ARML February 21, 2021

Number Theory 1

Varsity Practice 2/21/21 Matthew Shi

1 True Statements on Modularity

- Bezout's Theorem: ax + by = c for fixed a, b, c has solution (x, y) iff gcd(a, b) divides c. This stems from the Euclidean algorithm, which is based on the fact that gcd(bq + r, b) = gcd(r, b) for any q.
- Multiplicative Inverses: If gcd(a, n) = 1, then there exists a^{-1} such that $a * a^{-1} \equiv 1 \mod n$. Inverses may be obtained via Euclidean Algorithm.
- Conversions: Given $x \equiv a \mod n$, we can rewrite this as x = a + kn, for some integer k. Similarly, given x = a + kn for any integer k, we can rewrite this as $x \equiv a \mod n$.
- Chinese Remainder Theorem: Suppose we are given two equations $x = a \mod m$, $x = b \mod n$. We can combine the two into a singular equation $x = c \mod lcm(m, n)$, by substituting one equation into the other.
- Fermat's Little Theorem: $a^p \equiv a \mod p$, for p prime.
- Wilson's Theorem: $(p-1)! = -1 \mod p$ for p prime.
- Euler's Theorem: Let $\phi(n)$ represent the number of integers x such that $x \leq n$ and gcd(x, n) = 1. Then $a^{\phi(n)} \equiv 1 \mod n$, for a, n relatively prime.

2 Problems

Problems taken from Stanford Math Tournament and Berkeley Math Tournament

- 1. What is $2019^{2019} \mod 11$?
- 2. Compute the remainder when 98! is divided by 101.
- 3. The number N_b is the number that, when written in base b, is represented as 123. What is the smallest b such that N_b is a perfect cube?
- 4. Let $1 = a_1 < a_2 < \ldots < a_k = n$ denote the factors of n in increasing order. Suppose $n = a_3^3 a_2^3$. Solve for n.
- 5. Positive integer n has the property that n-64 is a perfect cube. Further suppose that n is divisible by 37. Find the smallest positive value for n.
- 6. Suppose both p and $p^4 + 34$ are prime numbers. Solve for p.
- 7. Compute $\sum_{i=1}^{9} 99gcd(x, 10x + 9)$.

Western PA ARML February 21, 2021

8. Find the two smallest numbers n such that 3^n is divisible by n and $3^n - 1$ is divisible by n - 1.

- 9. Compute the last two digits of $2^{3^4\cdots 2014}$.
- 10. Find the largest integer that divides $p^2 1$ for all primes p > 3.
- 11. Compute the remainder when the product of all positive integers less than and relatively prime to 2019 is divided by 2019.
- 12. Let f(x) be defined as $\sum_{i=0}^{2} {x-1 \choose i} ((x-1-i)! + i!) \mod x$. Let S be the set of all primes between 3 and 30 inclusive. Compute $\sum_{x \in S} f(x)$.
- 13. Let $\psi(n)$ be the number of integers $0 \le r < n$ such that there exists x such that $x^2 + x \equiv r \mod n$. Find the sum of all distinct prime factors of

$$\sum_{i=0}^{4} \sum_{j=0}^{4} \psi(3^i 5^j)$$

3 Advanced Problems

Selection from HMMT, PuMaC, and CHMMC

- 1. Warmup: Calculate $\phi(p^k)$, and $\phi(p^kq^j)$ for p,q prime, and j,k>0. Extend this to $\phi(p^kq)$ for p prime and not dividing q.
- 2. Warmup: Let $\sigma(n)$ denote the sum of the factors of n. Calculate $\sigma(p^k)$ and $\sigma(p^kq^j)$ for p,q prime, and j,k>0. Extend this to $\sigma(p^kq)$ for p prime and not dividing q.
- 3. (CHMMC 2020) Find the smallest positive integer k such that there exists exactly one prime number of the form kx + 60 for $0 \le x \le 10$. (So among all the kx + 60 for $0 \le x \le 10$, then exactly one of them is prime.)
- 4. Let S be the sum of all positive integers n such that 3/5 of the positive divisors of n are multiples of 6 and n has no prime divisors greater than 3. Calculate S/36.
- 5. Let S be the set of all positive integers n satisfying:
 - n is relatively prime to all numbers $\leq n/6$.
 - $2^n \equiv 4 \bmod n$
- 6. Find the remainder when $\prod_{i=1}^{1903} (2^i + 5)$ is divided by 1000.
- 7. Let p, q < 200 be prime numbers such that $\frac{q^p-1}{p}$ is a perfect square. Find all possible pairs of p+q.
- 8. For a positive integer n, let $\phi(n)$ be the Euler totient function, and let $\sigma(n)$ be the sum of the positive divisors of n. Find the sum of all positive even n such that

$$\frac{\sigma(n)n^5 - 2}{\phi(n)}$$

is an integer.

Western PA ARML February 21, 2021

9. For a positive integer n, let f(n) be equal to the sum of all positive numbers $k \leq n$ such that k, n are relatively prime. Let S be the sum of $\frac{1}{f(m)}$ over all m that are divisible by 2, 3, and 5, and whose prime factors are only 2, 3, and 5. Then $S = \frac{p}{q}$ for relatively prime p, q. Find p + q.