Diophantine

Tudor Popescu

March 2021

1 Infinite descent

We start with one of the most known examples of infinite descent:

$$
\text { Prove that } \sqrt{2} \text { is irrational. }
$$

Assume for the sake of contradiction that $\sqrt{2}$ is rational, hence it can be written as $\sqrt{2}=\frac{a}{b}, \operatorname{gcd}(a, b)=1$. By squaring, we have that $2=\frac{a^{2}}{b^{2}}$, so $2 b^{2}=a^{2}$. Therefore, $2 \mid a$, so a is even, so we can write $a=2 a_{1}, a_{1} \in \mathbb{Z}$. Plugging this in the initial equation, we have that $2 b^{2}=4 a_{1}^{2} \Rightarrow b^{2}=2 a_{1}^{2}$. Similar to above, we get that b is even, so $2 \mid b$. However, we have that $2 \mid a$, and by our assumption we had that $\operatorname{gcd}(a, b)=1$, impossible since $2|a, 2| b$, so we have reached a contradiction.

2 Tricks and things to do when you first see a diophantine equations

- Check "modulo" primes (and use Fermat's Little Theorem);
- See how big things can be and if you can find a smallest/largest solution;
- Factorize! Use algebraic manipulations to get a nicer relation (add $x y$, subtract y^{2}, etc.);

3 Problems

- Solve in positive integers $1!+2!+\ldots+x!=y^{2}$
- Solve in positive integers $x^{3}-y^{3}=x y+61$.
- Find all the triplets of positive integers such that $2=\left(1+\frac{1}{x}\right)\left(1+\frac{1}{y}\right)\left(1+\frac{1}{z}\right)$
- Let $p>3$ be a prime. Find all the triplets of positive integers (x, y, z) such that $x^{3}+y^{3}+z^{3}-3 x y z=p$.
- Solve in positive integers $x^{4}+4=p$, where p is a prime.
- (JBMO 2020) Find all prime numbers p and q such that

$$
1+\frac{p^{q}-q^{p}}{p+q}
$$

is a prime number.

- Prove that the system of solutions has no nontrivial solution:

$$
x^{2}+6 y^{2}=z^{2} ; 6 x^{2}+y^{2}=t^{2}
$$

- (BMO 2009) Solve the equation

$$
3^{x}-5^{y}=z^{2}
$$

in positive integers.

- (JBMO 2019)Find all prime numbers p for which there exist positive integers x, y, and z such that the number

$$
x^{p}+y^{p}+z^{p}-x-y-z
$$

is a product of exactly three distinct prime numbers.

- BMO 2014 A special number is a positive integer n for which there exists positive integers a, b, c, and d with

$$
n=\frac{a^{3}+2 b^{3}}{c^{3}+2 d^{3}}
$$

Prove that:

- there are infinitely many special numbers;
- 2014 is not a special number.
- (BMO 1998) Prove that the following equation has no solution in integer numbers:

$$
x^{2}+4=y^{5}
$$

