Very inscribed angles - part 1

1. Warm-Up

1. a) Let $A B C$ be an arbitrary triangle. Let I be its incenter and let D be the point where line $B I$ crosses the circumcircle of $\triangle A B C$. Prove that D is equidistant from A, C, and I.
b) Prove that the point symmetric to the orthocenter of a triangle with respect to its side lies on the circumscribed circle of this triangle.
2. The bisector of the outer angle at the vertex C of $\triangle A B C$ intersects the circumcircle at point D. Prove that $A D=B D$.
3. Points A, B, C and D lie on a circle. Points M, N, K and L are the midpoints of arcs $A B, B C, C D$ and $D A$, sequentially located on a circle. Prove that chords $M K$ and $N L$ are perpendicular.
4. On the side $B C$ of triangle $A B C$, as on the diameter, a circle is constructed that intersects the segment $A B$ at point D. Find the ratio of the areas of $\triangle A B C$ and $\triangle B C D$ if you know that $A C=15, B C=20$ and $\angle A B C=\angle A C D$.
5. Point O is the center of the circumscribed circle of an acute-angled $\triangle A B C$. The altitude $A H$ is drawn from the vertex A. Prove that $\angle B A H=\angle O A C$.
6. The altitude $A H$ is drawn in $\triangle A B C ; O$ is the center of the circumscribed circle. Prove that $\angle O A H=$ $|\angle B-\angle C|$.
7. A circle with the center O inscribed in quadrilateral $A B C D$ and touches its non-parallel sides $B C$ and $A D$ in points E and F. Let the line $A O$ and segment $\overline{E F}$ intersect at point N, and lines $B K$ and $C N$ at point M. Prove that points O, K, M, and N lie on the same circle.

2. Problems

1. A circle is constructed on the leg $A C$ of a right-angled $\triangle A B C$ as on a diameter, intersecting the hypotenuse $A B$ at point K. Find $C K$ if $A C=2$ and $\angle A=30^{\circ}$.
2. From an arbitrary point M, lying inside of a given angle with apex A, perpendiculars $M P$ and $M Q$ are dropped on the sides of the angle. Perpendicular $A K$ is dropped from the point A to a segment $P Q$. Prove that $\angle P A K=\angle M A Q$.
3. A circle s with center O and a circle s^{\prime} intersect in points A and B. On the arc of circle s that lie inside the circle s^{\prime} point C was chosen. Let the intersection points of $A B$ and $B C$ with s^{\prime} other than A and B will be E and D respectively. Prove that the lines $D E$ and $O C$ are perpendicular.
4. Two circles intersect in two points P and Q. A line intersect these two circles in four points A, B, C and D like in is shown in the diagram below. Prove that $\angle A P B=\angle C Q D$.

5. In acute-angled $\triangle A B C$ point O is a center of its circumcircle. Through the points O, B and C were circumscribed a circle s. Let $O K$ be a diameter of the circle s, as well as points D and E be the points of its intersection with lines $A B$ and $A C$ respectively. Prove that $A D K E$ is a parallelogram.
6. Points D, E and F are taken on the sides $A B, B C$ and $A C$ of $\triangle A B C$, respectively, so that $D E=B E$ and $F E=C E$. Prove that the circumcenter of $\triangle A D F$ lies on the bisector of $\angle D E F$.
7. Inside the parallelogram $A B C D$ was chosen such point M, as well as inside $\triangle A M D$ point N that $\angle M N A+\angle M C B=\angle M N D+\angle M B C=180^{\circ}$. Prove that lines $M N$ and $A B$ are parallel.
8. A circle with center O inscribed in $\triangle A B C$ and tangent its sides $A B, B C$, and $A C$ in points E, F, and D respectively. Lines $A O$ and $C O$ intersect line $E F$ in points N and M. Prove that the circumcenter of $\triangle O M N$, point O and D lie in one line.

3. Bonus

1. The diagonals of the inscribed quadrilateral $A B C D$ meet at point $M, \angle A M B=60^{\circ}$. Equilateral triangles $A D K$ and $B C L$ are built on the sides $A D$ and $B C$ outside of $A B C D$. Line $K L$ meets the circumcircle of $A B C D$ at points P and Q. Prove that $P K=L Q$.
