Inequalities

Varsity Practice 10/4/20
 Matthew Shi

Here's some inequalities in roughly increasing order of difficulty:

- AM-GM: Given $x_{1}, \ldots, x_{n}, \sum x_{i} / n \leq\left(\Pi x_{i}\right)^{1 / n}$.
- Cauchy-Schwarz: Given two vectors $u, v,|u \cdot v|^{2} \leq\|u\|^{2}\|v\|^{2}$. Alternatively, given x_{1}, \ldots, x_{n} and y_{1}, \ldots, y_{n}, you can find that $\left(\sum x_{i} y_{i}\right)^{2} \leq\left(\sum x_{i}^{2}\right)\left(\sum y_{i}^{2}\right)$. This can also be expressed as $\left(\sum \sqrt{x_{i} y_{i}}\right)^{2} \leq\left(\sum x_{i}\right)\left(\sum y_{i}\right)$, assuming $x_{i}, y_{i} \geq 0$.
- Jensen: Let f be a convex function, $t \in(0,1)$. Then $t f\left(x_{1}\right)+(1-t) f\left(x_{2}\right) \geq f\left(t x_{1}+(1-t) x_{2}\right)$.

1 Warming Up

1. Prove $A M-G M$. Start with the $n=2$ case.
2. Suppose a point satisfies $x y z^{2}=2$. Find the minimum distance of that point to the origin.
3. Prove Cauchy-Schwarz for when $u, v \in \mathbb{R}^{2}$.
4. Suppose $x+y+z=3$. Find the minimum value of $\left(\frac{4}{x}+\frac{9}{y}+\frac{16}{z}\right)$.

2 Problems Part 1

1. Let x, y, z be real numbers such that $x+2 y+z=4$. Find the maximum value of $x y+x z+y z$.
2. Let nonnegative $a+b+c+d=1$. Find the maximum value of $a b+b c+c d$.
3. Let x, y, z be positive real numbers such that $x+y+z=1$. Maximize $x^{3} y^{2} z$.
4. Find the number of ordered triples (x, y, z) such that $x^{4}+y^{4}+z^{4}-4 x y z=1$.
5. Find the maximum of $\sqrt{x+27}+\sqrt{13-x}+\sqrt{x}$ for $0 \leq x \leq 13$.
6. Let $x, y>1$ such that $a^{4}+b^{4}+8=8 a b$. Calculate $2^{\sqrt{2} a}+3^{\sqrt{3} b}$.
7. Let a be a real number. Find the minimum of the value $x+\frac{a}{x}$, for $x>0$. Solve in terms of a.

3 Problems Part 2

These are pretty difficult.

1. Let x, y, z be distinct real numbers such that $x+y+z=0$. Find the maximum possible value of $\frac{x y+y z+x z}{x^{2}+y^{2}+z^{2}}$.
2. Let x be a positive real number. Find the maximum value of $\frac{x^{2}+2-\sqrt{x^{4}+4}}{x}$.
3. For $n \geq 2$ let $a_{1}, a_{2}, \ldots, a_{n}$ be positive real numbers such that

$$
\left(a_{1}+a_{2}+\ldots+a_{n}\right)\left(\frac{1}{a_{1}}+\frac{1}{a_{2}}+\ldots+\frac{1}{a_{n}}\right) \leq\left(n+\frac{1}{2}\right)^{2}
$$

Prove that $\max \left(a_{1}, a_{2}, \ldots, a_{n}\right) \leq 4 \min \left(a_{1}, a_{2}, \ldots, a_{n}\right)$.
4. Let a, b, c be positive real numbers such that $a^{2}+b^{2}+c^{2}+(a+b+c)^{2} \leq 4$. Prove that

$$
\frac{a b+1}{(a+b)^{2}}+\frac{b c+1}{(b+c)^{2}}+\frac{c a+1}{(c+a)^{2}} \geq 3
$$

