Inequalities

Varsity Practice 10/4/20 Matthew Shi

Here's some inequalities in roughly increasing order of difficulty:

- AM-GM: Given $x_1, ..., x_n, \sum x_i/n \le (\prod x_i)^{1/n}$.
- Cauchy-Schwarz: Given two vectors $u, v, |u \cdot v|^2 \leq ||u||^2 ||v||^2$. Alternatively, given $x_1, ..., x_n$ and $y_1, ..., y_n$, you can find that $(\sum x_i y_i)^2 \leq (\sum x_i^2) (\sum y_i^2)$. This can also be expressed as $(\sum \sqrt{x_i y_i})^2 \leq (\sum x_i) (\sum y_i)$, assuming $x_i, y_i \geq 0$.
- Jensen: Let f be a convex function, $t \in (0, 1)$. Then $tf(x_1) + (1-t)f(x_2) \ge f(tx_1 + (1-t)x_2)$.

1 Warming Up

- 1. Prove AM GM. Start with the n = 2 case.
- 2. Suppose a point satisfies $xyz^2 = 2$. Find the minimum distance of that point to the origin.
- 3. Prove Cauchy-Schwarz for when $u, v \in \mathbb{R}^2$.
- 4. Suppose x + y + z = 3. Find the minimum value of $(\frac{4}{x} + \frac{9}{y} + \frac{16}{z})$.

2 Problems Part 1

- 1. Let x, y, z be real numbers such that x + 2y + z = 4. Find the maximum value of xy + xz + yz.
- 2. Let nonnegative a + b + c + d = 1. Find the maximum value of ab + bc + cd.
- 3. Let x, y, z be positive real numbers such that x + y + z = 1. Maximize x^3y^2z .
- 4. Find the number of ordered triples (x, y, z) such that $x^4 + y^4 + z^4 4xyz = 1$.
- 5. Find the maximum of $\sqrt{x+27} + \sqrt{13-x} + \sqrt{x}$ for $0 \le x \le 13$.
- 6. Let x, y > 1 such that $a^4 + b^4 + 8 = 8ab$. Calculate $2^{\sqrt{2}a} + 3^{\sqrt{3}b}$.
- 7. Let a be a real number. Find the minimum of the value $x + \frac{a}{x}$, for x > 0. Solve in terms of a.

3 Problems Part 2

These are pretty difficult.

- 1. Let x, y, z be distinct real numbers such that x + y + z = 0. Find the maximum possible value of $\frac{xy+yz+xz}{x^2+y^2+z^2}$.
- 2. Let x be a positive real number. Find the maximum value of $\frac{x^2+2-\sqrt{x^4+4}}{x}$.
- 3. For $n \ge 2$ let $a_1, a_2, ..., a_n$ be positive real numbers such that

$$(a_1 + a_2 + \dots + a_n) \left(\frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n}\right) \le \left(n + \frac{1}{2}\right)^2$$

Prove that $\max(a_1, a_2, ..., a_n) \le 4\min(a_1, a_2, ..., a_n).$

4. Let a, b, c be positive real numbers such that $a^2 + b^2 + c^2 + (a + b + c)^2 \le 4$. Prove that

$$\frac{ab+1}{(a+b)^2} + \frac{bc+1}{(b+c)^2} + \frac{ca+1}{(c+a)^2} \ge 3.$$