1 A grab bag?

- AM-GM: Given $x_{1}, \ldots, x_{n}, \sum x_{i} / n \leq\left(\Pi x_{i}\right)^{1 / n}$.
- Weighted AM-GM: Given $a_{1}, \ldots, a_{n}, i_{1}, \ldots, i_{n}$ weighted such that $\sum i_{j}=1$, we have $\sum a_{j} i_{j} \geq$ $\prod a_{j}^{i_{j}}$.
- Cauchy-Schwarz: Given two vectors $u, v,|u \cdot v|^{2} \leq\|u\|^{2}\|v\|^{2}$. Alternatively, given x_{1}, \ldots, x_{n} and y_{1}, \ldots, y_{n}, you can find that $\left(\sum x_{i} y_{i}\right)^{2} \leq\left(\sum x_{i}^{2}\right)\left(\sum y_{i}^{2}\right)$. This can also be expressed as $\left(\sum \sqrt{x_{i} y_{i}}\right)^{2} \leq\left(\sum x_{i}\right)\left(\sum y_{i}\right)$, assuming $x_{i}, y_{i} \geq 0$. Square rooting both sides gives one final form $\sum \sqrt{x_{i} y_{i}} \leq \sqrt{\left(\sum x_{i}\right)\left(\sum y_{i}\right)}$
- Jensen: Let f be a convex function, $t \in(0,1)$. Then $t f\left(x_{1}\right)+(1-t) f\left(x_{2}\right) \geq f\left(t x_{1}+(1-t) x_{2}\right)$.

2 Problems Part 1.5

A different set of problems which are on the easier...? end. Note: A bit proofy as well. Some problems do reuse parts of proofs from other problems.

1. Prove that $3\left(a^{2}+b^{2}+c^{2}\right) \geq(a+b+c)^{2} \geq 3(a b+b c+c a)$.
2. Prove that $a^{3}+b^{3}+c^{3} \geq a^{2} b+b^{2} c+c^{2} a$, for $a, b, c>0$.
3. Suppose $a, b, c>0$ such that $a+b+c=3$. Prove that $a^{2}+b^{2}+c^{2}+a b+b c+c a \geq 6$.
4. Let $a, b, c>0$ such that $a b c=1$. Prove that $a^{2}+b^{2}+c^{2} \geq a+b+c$.
5. Let $a, b, c, d>0$ and $a+b+c+d=4$. Show that $\frac{4}{a b c d} \geq \frac{a}{b}+\frac{b}{c}+\frac{c}{d}+\frac{d}{a}$
6. Prove that $\sqrt{3 x^{2}+x y}+\sqrt{3 y^{2}+y z}+\sqrt{3 z^{2}+z x} \leq 2(x+y+z)$.
7. Suppose $a^{2}+b^{2}+c^{2}+d^{2}=4$. Show that $\frac{a^{2}}{b}+\frac{b^{2}}{c}+\frac{c^{2}}{d}+\frac{d^{2}}{a} \geq 4$.

3 Problems Part 2.1

A different set of harder problems I didn't have time to get solutions for.

1. Let $a, b, c>0$ such that $a b c=1$. Prove that

$$
\frac{a}{b}+\frac{b}{c}+\frac{c}{a} \geq a+b+c
$$

2. Let $a, b, c>0$ such that $a+b+c=1$. Prove that $\frac{a}{\sqrt{a+2 b}}+\frac{b}{\sqrt{b+2 c}}+\frac{c}{\sqrt{c+2 a}}<\sqrt{3 / 2}$.
3. Suppose $a, b, c, d \geq 0$. Prove that $a /(b+c)+b /(c+d)+c /(d+a)+d /(a+b) \geq 2$.
(Hint 1: There's more than one possible choice to multiply the LHS by.)
(Hint 2: You're going to need both AM-GM and C-S)
4. Let $a, b, c>0$. Prove that $\frac{a}{b}+\frac{b}{c}+\frac{c}{a}+\frac{3(a b c)^{1 / 3}}{a+b+c} \geq 4$.

4 Problems Part 2

Reposted from last week's part 2 (pretty difficult):

1. Let x, y, z be distinct real numbers such that $x+y+z=0$. Find the maximum possible value of $\frac{x y+y z+x z}{x^{2}+y^{2}+z^{2}}$.
2. Let x be a positive real number. Find the maximum value of $\frac{x^{2}+2-\sqrt{x^{4}+4}}{x}$.
3. For $n \geq 2$ let $a_{1}, a_{2}, \ldots, a_{n}$ be positive real numbers such that

$$
\left(a_{1}+a_{2}+\ldots+a_{n}\right)\left(\frac{1}{a_{1}}+\frac{1}{a_{2}}+\ldots+\frac{1}{a_{n}}\right) \leq\left(n+\frac{1}{2}\right)^{2}
$$

Prove that $\max \left(a_{1}, a_{2}, \ldots, a_{n}\right) \leq 4 \min \left(a_{1}, a_{2}, \ldots, a_{n}\right)$.
4. Let a, b, c be positive real numbers such that $a^{2}+b^{2}+c^{2}+(a+b+c)^{2} \leq 4$. Prove that

$$
\frac{a b+1}{(a+b)^{2}}+\frac{b c+1}{(b+c)^{2}}+\frac{c a+1}{(c+a)^{2}} \geq 3
$$

