Geometry Algebra Style

Varsity Practice 10/25/20
Lucas Jia

1 Warm-Up Problems

1. (1999 AHSME \#15) Let x be a real number such that $\sec x-\tan x=2$. Compute $\sec x+\tan x$.
2. (2007 AMC 12A \#17) Suppose that $\sin a+\sin b=\sqrt{\frac{5}{3}}$ and $\cos a+\cos b=1$. What is $\cos (a-b)$?
3. (1996 AIME \#10) Find the smallest positive integer solution to $\tan 19 x^{\circ}=\frac{\cos 96^{\circ}+\sin 96^{\circ}}{\cos 96^{\circ}-\sin 96^{\circ}}$.

2 Problem Set

1. (1999 AHSME \#27) In triangle $A B C, 3 \sin A+4 \cos B=6$ and $4 \sin B+3 \cos A=1$. Then $\angle C$ is how many degrees?
2. (2006 iTest \#17) Let $\sin (2 x)=\frac{1}{7}$. Find the numerical value of $\sin (x) \sin (x) \sin (x) \sin (x)+$ $\cos (x) \cos (x) \cos (x) \cos (x)$.
3. (2008 iTest \#57) Let a and b be the two possible values of $\tan \theta$ given that $\sin \theta+\cos \theta=\frac{193}{137}$. If $a+b=m / n$, where m and n are relatively prime positive integers, compute $m+n$.
4. (1995 AIME \#9) Triangle $A B C$ is isosceles, with $A B=A C$ and altitude $A M=11$. Suppose that there is a point D on $\overline{A M}$ with $A D=10$ and $\angle B D C=3 \angle B A C$. Then the perimeter of $\triangle A B C$ may be written in the form $a+\sqrt{b}$, where a and b are integers. Find $a+b$.
5. (1995 AIME \#7) Given that $(1+\sin t)(1+\cos t)=5 / 4$ and $(1-\sin t)(1-\cos t)=\frac{m}{n}-\sqrt{k}$, where k, m, and n are positive integers with m and n relatively prime, find $k+m+n$.
6. (1991 AIME \#9) Suppose that $\sec x+\tan x=\frac{22}{7}$ and that $\csc x+\cot x=\frac{m}{n}$, where $\frac{m}{n}$ is in lowest terms. Find $m+n$.
7. (2003 AIME I \#4) Given that $\log _{10} \sin x+\log _{10} \cos x=-1$ and that $\log _{10}(\sin x+\cos x)=$ $\frac{1}{2}\left(\log _{10} n-1\right)$, find n.
8. (2008 AIME I \#8) Find the positive integer n such that

$$
\arctan \frac{1}{3}+\arctan \frac{1}{4}+\arctan \frac{1}{5}+\arctan \frac{1}{n}=\frac{\pi}{4} .
$$

9. (2006 AIME I \#12) Find the sum of the values of x such that $\cos ^{3} 3 x+\cos ^{3} 5 x=8 \cos ^{3} 4 x \cos ^{3} x$, where x is measured in degrees and $100<x<200$.
10. (1980 USAMO \#3) $A+B+C$ is an integral multiple of $\pi . x, y$, and z are real numbers. If $x \sin (A)+y \sin (B)+z \sin (C)=x^{2} \sin (2 A)+y^{2} \sin (2 B)+z^{2} \sin (2 C)=0$, show that $x^{n} \sin (n A)+$ $y^{n} \sin (n B)+z^{n} \sin (n C)=0$ for any positive integer n.
