Recursion

Varsity Practice 11/8/20
C.J. Argue

1 Background

A recurrence is a rule that defines the n-th term of a sequence in terms of previous terms, along with the value of the first term(s) of the sequence. Solving a recurrence means finding a closed-form expression for the n-th term (i.e. writing the n-th term as a function of n).

Example. Solve the recurrence $a_{n+1}=2 a_{n}+1$ where $a_{0}=0$.
Solution. For each n, let $b_{n}=a_{n}+1$. Then $b_{n+1}=a_{n+1}+1=2 a_{n}+2=2 b_{n}$. It follows that

$$
b_{n}=2 b_{n-1}=2^{2} b_{n-2}=\cdots=2^{n} b_{0}=2^{n}\left(a_{0}+1\right)=2^{n} .
$$

Therefore, $a_{n}=b_{n}-1=2^{n}-1$.

2 Warm-Up

1. Solve the recurrence $b_{n+1}=3 b_{n}+n$ where $b_{0}=0$.
2. The Fibonacci numbers are defined by the recurrence $f_{n}=f_{n-1}+f_{n-2}$, with $f_{0}=0$ and $f_{1}=1$. Prove that

$$
f_{n}=\frac{1}{\sqrt{5}}\left(\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\left(\frac{1-\sqrt{5}}{2}\right)^{n}\right)
$$

3 Solving recurrences

1. Solve the recurrence $c_{n+1}=5 c_{n}+3^{n}$ where $c_{0}=0$.
2. Solve the recurrence $d_{n+2}=d_{n}+2 d_{n}$ where $d_{0}=0$ and $d_{1}=1$.
3. Solve the recurrence $2 e_{n}=n e_{n-1}+3 \cdot n$! with $e_{0}=5$.
4. Solve the recurrence $g_{n+2}=g_{n+1}+g_{n}+1$ where $g_{0}=0$.
5. Solve the recurrence $h_{j+1}=h_{j}^{2}+2 h_{j}$ with $h_{0}=1$.
6. Solve the recurrence $p_{n}=p_{n-1}+n p_{n-2}$ with $p_{0}=0, p_{1}=1$.
7. (Brilliant) Solve the recurrence

$$
\frac{q_{n}}{n^{2}+5 n+6}=\frac{q_{n-1}}{n^{2}+6 n+8}+\frac{n+1}{n^{2}+7 n+12},
$$

where $q_{0}=1$.
8. (Brilliant) Solve the recurrence $(n+1)^{2} r_{n+1}=n^{3} r_{n}+1$ with $r_{0}=3$.

